Johns Hopkins University
Abstract:Robotic objects are simple actuated systems that subtly blend into human environments. We design and introduce Lantern, a minimalist robotic object platform to enable building simple robotic artifacts. We conducted in-depth design and engineering iterations of Lantern's mechatronic architecture to meet specific design goals while maintaining a low build cost (~40 USD). As an extendable, open-source platform, Lantern aims to enable exploration of a range of HRI scenarios by leveraging human tendency to assign social meaning to simple forms. To evaluate Lantern's potential for HRI, we conducted a series of explorations: 1) a co-design workshop, 2) a sensory room case study, 3) distribution to external HRI labs, 4) integration into a graduate-level HRI course, and 5) public exhibitions with older adults and children. Our findings show that Lantern effectively evokes engagement, can support versatile applications ranging from emotion regulation to focused work, and serves as a viable platform for lowering barriers to HRI as a field.
Abstract:Plants offer a paradoxical model for interaction: they are ambient, low-demand presences that nonetheless shape atmosphere, routines, and relationships through temporal rhythms and subtle expressions. In contrast, most human-robot interaction (HRI) has been grounded in anthropomorphic and zoomorphic paradigms, producing overt, high-demand forms of engagement. Using a Research through Design (RtD) methodology, we explore plants as metaphoric inspiration for HRI; we conducted iterative cycles of ideation, prototyping, and reflection to investigate what design primitives emerge from plant metaphors and morphologies, and how these primitives can be combined into expressive robotic forms. We present a suite of speculative, open-source prototypes that help probe plant-inspired presence, temporality, form, and gestures. We deepened our learnings from design and prototyping through prototype-centered workshops that explored people's perceptions and imaginaries of plant-inspired robots. This work contributes: (1) Set of plant-inspired robotic artifacts; (2) Designerly insights on how people perceive plant-inspired robots; and (3) Design consideration to inform how to use plant metaphors to reshape HRI.
Abstract:Large language models (LLMs) have enabled conversational robots to move beyond constrained dialogue toward free-form interaction. However, without context-specific adaptation, generic LLM outputs can be ineffective or inappropriate. This adaptation is often attempted through prompt engineering, which is non-intuitive and tedious. Moreover, predominant design practice in HRI relies on impression-based, trial-and-error refinement without structured methods or tools, making the process inefficient and inconsistent. To address this, we present the AI-Aided Conversation Engine (ACE), a system that supports the deliberate design of human-robot conversations. ACE contributes three key innovations: 1) an LLM-powered voice agent that scaffolds initial prompt creation to overcome the "blank page problem," 2) an annotation interface that enables the collection of granular and grounded feedback on conversational transcripts, and 3) using LLMs to translate user feedback into prompt refinements. We evaluated ACE through two user studies, examining both designs' experience and end users' interactions with robots designed using ACE. Results show that ACE facilitates the creation of robot behavior prompts with greater clarity and specificity, and that the prompts generated with ACE lead to higher-quality human-robot conversational interactions.
Abstract:Pre-trained robot policies serve as the foundation of many validated robotic systems, which encapsulate extensive embodied knowledge. However, they often lack the semantic awareness characteristic of foundation models, and replacing them entirely is impractical in many situations due to high costs and the loss of accumulated knowledge. To address this gap, we introduce GUIDES, a lightweight framework that augments pre-trained policies with semantic guidance from foundation models without requiring architectural redesign. GUIDES employs a fine-tuned vision-language model (Instructor) to generate contextual instructions, which are encoded by an auxiliary module into guidance embeddings. These embeddings are injected into the policy's latent space, allowing the legacy model to adapt to this new semantic input through brief, targeted fine-tuning. For inference-time robustness, a large language model-based Reflector monitors the Instructor's confidence and, when confidence is low, initiates a reasoning loop that analyzes execution history, retrieves relevant examples, and augments the VLM's context to refine subsequent actions. Extensive validation in the RoboCasa simulation environment across diverse policy architectures shows consistent and substantial improvements in task success rates. Real-world deployment on a UR5 robot further demonstrates that GUIDES enhances motion precision for critical sub-tasks such as grasping. Overall, GUIDES offers a practical and resource-efficient pathway to upgrade, rather than replace, validated robot policies.
Abstract:The integration of large language models (LLMs) into conversational robots has made human-robot conversations more dynamic. Yet, LLM-powered conversational robots remain prone to errors, e.g., misunderstanding user intent, prematurely interrupting users, or failing to respond altogether. Detecting and addressing these failures is critical for preventing conversational breakdowns, avoiding task disruptions, and sustaining user trust. To tackle this problem, the ERR@HRI 2.0 Challenge provides a multimodal dataset of LLM-powered conversational robot failures during human-robot conversations and encourages researchers to benchmark machine learning models designed to detect robot failures. The dataset includes 16 hours of dyadic human-robot interactions, incorporating facial, speech, and head movement features. Each interaction is annotated with the presence or absence of robot errors from the system perspective, and perceived user intention to correct for a mismatch between robot behavior and user expectation. Participants are invited to form teams and develop machine learning models that detect these failures using multimodal data. Submissions will be evaluated using various performance metrics, including detection accuracy and false positive rate. This challenge represents another key step toward improving failure detection in human-robot interaction through social signal analysis.




Abstract:Wearable technology has significantly improved the quality of life for older adults, and the emergence of on-body, movable robots presents new opportunities to further enhance well-being. Yet, the interaction design for these robots remains under-explored, particularly from the perspective of older adults. We present findings from a two-phase co-design process involving 13 older adults to uncover design principles for on-body robots for this population. We identify a rich spectrum of potential applications and characterize a design space to inform how on-body robots should be built for older adults. Our findings highlight the importance of considering factors like co-presence, embodiment, and multi-modal communication. Our work offers design insights to facilitate the integration of on-body robots into daily life and underscores the value of involving older adults in the co-design process to promote usability and acceptance of emerging wearable robotic technologies.




Abstract:Effective error detection is crucial to prevent task disruption and maintain user trust. Traditional methods often rely on task-specific models or user reporting, which can be inflexible or slow. Recent research suggests social signals, naturally exhibited by users in response to robot errors, can enable more flexible, timely error detection. However, most studies rely on post hoc analysis, leaving their real-time effectiveness uncertain and lacking user-centric evaluation. In this work, we developed a proactive error detection system that combines user behavioral signals (facial action units and speech), user feedback, and error context for automatic error detection. In a study (N = 28), we compared our proactive system to a status quo reactive approach. Results show our system 1) reliably and flexibly detects error, 2) detects errors faster than the reactive approach, and 3) is perceived more favorably by users than the reactive one. We discuss recommendations for enabling robot error awareness in future HRI systems.
Abstract:Interruptions, a fundamental component of human communication, can enhance the dynamism and effectiveness of conversations, but only when effectively managed by all parties involved. Despite advancements in robotic systems, state-of-the-art systems still have limited capabilities in handling user-initiated interruptions in real-time. Prior research has primarily focused on post hoc analysis of interruptions. To address this gap, we present a system that detects user-initiated interruptions and manages them in real-time based on the interrupter's intent (i.e., cooperative agreement, cooperative assistance, cooperative clarification, or disruptive interruption). The system was designed based on interaction patterns identified from human-human interaction data. We integrated our system into an LLM-powered social robot and validated its effectiveness through a timed decision-making task and a contentious discussion task with 21 participants. Our system successfully handled 93.69% (n=104/111) of user-initiated interruptions. We discuss our learnings and their implications for designing interruption-handling behaviors in conversational robots.
Abstract:Despite the recent advancements in robotics and machine learning (ML), the deployment of autonomous robots in our everyday lives is still an open challenge. This is due to multiple reasons among which are their frequent mistakes, such as interrupting people or having delayed responses, as well as their limited ability to understand human speech, i.e., failure in tasks like transcribing speech to text. These mistakes may disrupt interactions and negatively influence human perception of these robots. To address this problem, robots need to have the ability to detect human-robot interaction (HRI) failures. The ERR@HRI 2024 challenge tackles this by offering a benchmark multimodal dataset of robot failures during human-robot interactions (HRI), encouraging researchers to develop and benchmark multimodal machine learning models to detect these failures. We created a dataset featuring multimodal non-verbal interaction data, including facial, speech, and pose features from video clips of interactions with a robotic coach, annotated with labels indicating the presence or absence of robot mistakes, user awkwardness, and interaction ruptures, allowing for the training and evaluation of predictive models. Challenge participants have been invited to submit their multimodal ML models for detection of robot errors and to be evaluated against various performance metrics such as accuracy, precision, recall, F1 score, with and without a margin of error reflecting the time-sensitivity of these metrics. The results of this challenge will help the research field in better understanding the robot failures in human-robot interactions and designing autonomous robots that can mitigate their own errors after successfully detecting them.


Abstract:We present and evaluate a prototype social robot to encourage daily exercise among older adults in a home setting. Our prototype system, designed to lead users through exercise sessions with motivational feedback, was assessed through a case study with a 78-year-old participant for one week. Our case study highlighted preferences for greater user control over exercise choices and questioned the necessity of precise motion tracking. Feedback also indicated a desire for more varied exercises and suggested improvements in user engagement techniques. The insights suggest that further research is needed to enhance system adaptability and effectiveness to better promote daily exercise. Future efforts will aim to refine the prototype based on participant feedback and extend the evaluation to broader in-home deployments.