Abstract:Scene text editing, a subfield of image editing, requires modifying texts in images while preserving style consistency and visual coherence with the surrounding environment. While diffusion-based methods have shown promise in text generation, they still struggle to produce high-quality results. These methods often generate distorted or unrecognizable characters, particularly when dealing with complex characters like Chinese. In such systems, characters are composed of intricate stroke patterns and spatial relationships that must be precisely maintained. We present GlyphMastero, a specialized glyph encoder designed to guide the latent diffusion model for generating texts with stroke-level precision. Our key insight is that existing methods, despite using pretrained OCR models for feature extraction, fail to capture the hierarchical nature of text structures - from individual strokes to stroke-level interactions to overall character-level structure. To address this, our glyph encoder explicitly models and captures the cross-level interactions between local-level individual characters and global-level text lines through our novel glyph attention module. Meanwhile, our model implements a feature pyramid network to fuse the multi-scale OCR backbone features at the global-level. Through these cross-level and multi-scale fusions, we obtain more detailed glyph-aware guidance, enabling precise control over the scene text generation process. Our method achieves an 18.02\% improvement in sentence accuracy over the state-of-the-art multi-lingual scene text editing baseline, while simultaneously reducing the text-region Fr\'echet inception distance by 53.28\%.
Abstract:Pixel-level Video Understanding in the Wild Challenge (PVUW) focus on complex video understanding. In this CVPR 2024 workshop, we add two new tracks, Complex Video Object Segmentation Track based on MOSE dataset and Motion Expression guided Video Segmentation track based on MeViS dataset. In the two new tracks, we provide additional videos and annotations that feature challenging elements, such as the disappearance and reappearance of objects, inconspicuous small objects, heavy occlusions, and crowded environments in MOSE. Moreover, we provide a new motion expression guided video segmentation dataset MeViS to study the natural language-guided video understanding in complex environments. These new videos, sentences, and annotations enable us to foster the development of a more comprehensive and robust pixel-level understanding of video scenes in complex environments and realistic scenarios. The MOSE challenge had 140 registered teams in total, 65 teams participated the validation phase and 12 teams made valid submissions in the final challenge phase. The MeViS challenge had 225 registered teams in total, 50 teams participated the validation phase and 5 teams made valid submissions in the final challenge phase.
Abstract:Complex video object segmentation serves as a fundamental task for a wide range of downstream applications such as video editing and automatic data annotation. Here we present the 2nd place solution in the MOSE track of PVUW 2024. To mitigate problems caused by tiny objects, similar objects and fast movements in MOSE. We use instance segmentation to generate extra pretraining data from the valid and test set of MOSE. The segmented instances are combined with objects extracted from COCO to augment the training data and enhance semantic representation of the baseline model. Besides, motion blur is added during training to increase robustness against image blur induced by motion. Finally, we apply test time augmentation (TTA) and memory strategy to the inference stage. Our method ranked 2nd in the MOSE track of PVUW 2024, with a $\mathcal{J}$ of 0.8007, a $\mathcal{F}$ of 0.8683 and a $\mathcal{J}$\&$\mathcal{F}$ of 0.8345.
Abstract:Video panoptic segmentation is an advanced task that extends panoptic segmentation by applying its concept to video sequences. In the hope of addressing the challenge of video panoptic segmentation in diverse conditions, We utilize DVIS++ as our baseline model and enhance it by introducing a comprehensive approach centered on the query-wise ensemble, supplemented by additional techniques. Our proposed approach achieved a VPQ score of 57.01 on the VIPSeg test set, and ranked 3rd in the VPS track of the 3rd Pixel-level Video Understanding in the Wild Challenge.