The massive multiple-input multiple-output (MIMO) transmission technology has recently attracted much attention in the non-geostationary, e.g., low earth orbit (LEO) satellite communication (SATCOM) systems since it can significantly improve the energy efficiency (EE) and spectral efficiency. In this work, we develop a hybrid analog/digital precoding technique in the massive MIMO LEO SATCOM downlink, which reduces the onboard hardware complexity and power consumption. In the proposed scheme, the analog precoder is implemented via a more practical twin-resolution phase shifting (TRPS) network to make a meticulous tradeoff between the power consumption and array gain. In addition, we consider and study the impact of the distortion effect of the nonlinear power amplifiers (NPAs) in the system design. By jointly considering all the above factors, we propose an efficient algorithmic approach for the TRPS-based hybrid precoding problem with NPAs. Numerical results show the EE gains considering the nonlinear distortion and the performance superiority of the proposed TRPS-based hybrid precoding scheme over the baselines.
Reflecting intelligent surfaces (RIS) has recently emerged as one of the promising technologies for achieving high energy and spectral efficiency in next-generation wireless networks. By using low-cost passive reflecting elements, RIS can smartly reconfigure the signal propagation to extend the wireless communication coverage. On the other side, Non-orthogonal multiple access (NOMA) has been proved as a key air interface technique for supporting massive connections over limited resources. This letter proposes a new optimization framework for the multicell RIS-NOMA network. In particular, we address the system spectral efficiency maximization with successive interference cancellation (SIC) decoding errors. The closed-form expressions of transmit power at the base station and power allocation coefficients of users are derived using Karush-Kuhn-Tucker conditions. Moreover, an efficient reflection matrix for RIS in each cell is designed using successive convex approximation and DC programming. Simulation results are provided to demonstrate the benefits of the proposed optimization in the multi-cell RISNOMA network.
Unmanned Aerial Vehicles (UAVs) are an important component of next-generation wireless networks that can assist in high data rate communications and provide enhanced coverage.Their high mobility and aerial nature offer deployment flexibility and low-cost infrastructure support to existing cellular networks and provide many applications that rely on mobile wireless communications. However, security is a major challenge in UAV communications, and Physical Layer Security (PLS) is an important technique to improve the reliability and security of data shared with the assistance of UAVs. Recently, Intelligent Reflecting Surfaces (IRS) have emerged as a novel technology to extend and/or enhance wireless coverage by re-configuring the propagation environment of communications. This paper provides an overview of how IRS can improve the PLS of UAV networks. We discuss different use cases of PLS for IRS enhanced UAV communications and briefly review the recent advances in this area. Then based on the recent advances, we also present a case study that utilizes alternate optimization to maximize the secrecy capacity for IRS enhanced UAV scenario in the presence of multiple eavesdroppers. Finally, we highlight several open issues and research challenges to realize PLS in IRS enhanced UAV communications.
The space-air-ground-sea integrated network (SAGSIN) plays an important role in offering global coverage. To improve the efficient utilization of spectral and hardware resources in the SAGSIN, integrated sensing and communications (ISAC) has drawn extensive attention. Most existing ISAC works focus on terrestrial networks and can not be straightforwardly applied in satellite systems due to the significantly different electromagnetic wave propagation properties. In this work, we investigate the application of ISAC in massive multiple-input multiple-output (MIMO) low earth orbit (LEO) satellite systems. We first characterize the statistical wave propagation properties by considering beam squint effects. Based on this analysis, we propose a beam squint-aware ISAC technique for hybrid analog/digital massive MIMO LEO satellite systems exploiting statistical channel state information. Simulation results demonstrate that the proposed scheme can operate both the wireless communications and the target sensing simultaneously with satisfactory performance, and the beam-squint effects can be efficiently mitigated with the proposed method in typical LEO satellite systems.
This paper investigates the secrecy outage probability (SOP), the lower bound of SOP, and the probability of non-zero secrecy capacity (PNZ) of reconfigurable intelligent surface (RIS)-assisted systems from an information-theoretic perspective. In particular, we consider the impacts of eavesdroppers' location uncertainty and the phase adjustment uncertainty, namely imperfect coherent phase shifting and discrete phase shifting on RIS. More specifically, analytical and simulation results are presented to show that (i) the SOP gain due to the increase of the RIS reflecting elements number gradually decreases; and (ii) both phase shifting designs demonstrate the same PNZ secrecy performance, in other words, the random discrete phase shifting outperforms the imperfect coherent phase shifting design with reduced complexity.
Massive multiple-input multiple-output (MIMO) is promising for low earth orbit (LEO) satellite communications due to the potential in enhancing the spectral efficiency. However, the conventional fully digital precoding architectures might lead to high implementation complexity and energy consumption. In this paper, hybrid analog/digital precoding solutions are developed for the downlink operation in LEO massive MIMO satellite communications, by exploiting the slow-varying statistical channel state information (CSI) at the transmitter. First, we formulate the hybrid precoder design as an energy efficiency (EE) maximization problem by considering both the continuous and discrete phase shift networks for implementing the analog precoder. The cases of both the fully and the partially connected architectures are considered. Since the EE optimization problem is nonconvex, it is in general difficult to solve. To make the EE maximization problem tractable, we apply a closed-form tight upper bound to approximate the ergodic rate. Then, we develop an efficient algorithm to obtain the fully digital precoders. Based on which, we further develop two different efficient algorithmic solutions to compute the hybrid precoders for the fully and the partially connected architectures, respectively. Simulation results show that the proposed approaches achieve significant EE performance gains over the existing baselines, especially when the discrete phase shift network is employed for analog precoding.
This paper investigates the massive connectivity of low Earth orbit (LEO) satellite-based Internet-of-Things (IoT) for seamless global coverage. We propose to integrate the grant-free non-orthogonal multiple access (GF-NOMA) paradigm with the emerging orthogonal time frequency space (OTFS) modulation to accommodate the massive IoT access, and mitigate the long round-trip latency and severe Doppler effect of terrestrial-satellite links (TSLs). On this basis, we put forward a two-stage successive active terminal identification (ATI) and channel estimation (CE) scheme as well as a low-complexity multi-user signal detection (SD) method. Specifically, at the first stage, the proposed training sequence aided OTFS (TS-OTFS) data frame structure facilitates the joint ATI and coarse CE, whereby both the traffic sparsity of terrestrial IoT terminals and the sparse channel impulse response are leveraged for enhanced performance. Moreover, based on the single Doppler shift property for each TSL and sparsity of delay-Doppler domain channel, we develop a parametric approach to further refine the CE performance. Finally, a least square based parallel time domain SD method is developed to detect the OTFS signals with relatively low complexity. Simulation results demonstrate the superiority of the proposed methods over the state-of-the-art solutions in terms of ATI, CE, and SD performance confronted with the long round-trip latency and severe Doppler effect.
Reconfigurable Intelligent Surfaces (RIS) are planar structures connected to electronic circuitry, which can be employed to steer the electromagnetic signals in a controlled manner. Through this, the signal quality and the effective data rate can be substantially improved. While the benefits of RIS-assisted wireless communications have been investigated for various scenarios, some aspects of the network design, such as coverage, optimal placement of RIS, etc., often require complex optimization and numerical simulations, since the achievable effective rate is difficult to predict. This problem becomes even more difficult in the presence of phase estimation errors or location uncertainty, which can lead to substantial performance degradation if neglected. Considering randomly distributed receivers within a ring-shaped RIS-assisted wireless network, this paper mainly investigates the effective rate by taking into account the above-mentioned impairments. Furthermore, exact closed-form expressions for the effective rate are derived in terms of Meijer's $G$-function, which (i) reveals that the location and phase estimation uncertainty should be well considered in the deployment of RIS in wireless networks; and (ii) facilitates future network design and performance prediction.
In millimeter-wave (mmWave) dual-function radar-communication (DFRC) systems, hybrid beamforming (HBF) is recognized as a promising technique utilizing a limited number of radio frequency chains. In this work, in the presence of extended target and clutters, a HBF design based on the subarray connection architecture is proposed for a multiple-input multiple-output (MIMO) DFRC system. In this HBF, the double-phase-shifter (DPS) structure is embedded to further increase the design flexibility. We derive the communication spectral efficiency (SE) and radar signal-to-interference-plus-noise-ratio (SINR) with respect to the transmit HBF and radar receiver, and formulate the HBF design problem as the SE maximization subjecting to the radar SINR and power constraints. To solve the formulated nonconvex problem, the joinT Hybrid bRamforming and Radar rEceiver OptimizatioN (THEREON) is proposed, in which the radar receiver is optimized via the generalized eigenvalue decomposition, and the transmit HBF is updated with low complexity in a parallel manner using the consensus alternating direction method of multipliers (consensus-ADMM). Furthermore, we extend the proposed method to the multi-user multiple-input single-output (MU-MISO) scenario. Numerical simulations demonstrate the efficacy of the proposed algorithm and show that the solution provides a good trade-off between number of phase shifters and performance gain of the DPS HBF.
Reconfigurable intelligent surfaces (RISs) have recently gained significant interest as an emerging technology for future wireless networks. This paper studies an RIS-assisted propagation environment, where a single-antenna source transmits data to a single-antenna destination in the presence of a weak direct link. We analyze and compare RIS designs based on long-term and short-term channel statistics in terms of coverage probability and ergodic rate. For the considered optimization designs, closed-form expressions for the coverage probability and ergodic rate are derived. We use numerical simulations to analyze and compare against analytic results in finite samples. Also, we show that the considered optimal phase shift designs outperform several heuristic benchmarks.