Abstract:Recent advances in text-to-speech technologies have enabled realistic voice generation, fueling audio-based deepfake attacks such as fraud and impersonation. While audio anti-spoofing systems are critical for detecting such threats, prior work has predominantly focused on acoustic-level perturbations, leaving the impact of linguistic variation largely unexplored. In this paper, we investigate the linguistic sensitivity of both open-source and commercial anti-spoofing detectors by introducing transcript-level adversarial attacks. Our extensive evaluation reveals that even minor linguistic perturbations can significantly degrade detection accuracy: attack success rates surpass 60% on several open-source detector-voice pairs, and notably one commercial detection accuracy drops from 100% on synthetic audio to just 32%. Through a comprehensive feature attribution analysis, we identify that both linguistic complexity and model-level audio embedding similarity contribute strongly to detector vulnerability. We further demonstrate the real-world risk via a case study replicating the Brad Pitt audio deepfake scam, using transcript adversarial attacks to completely bypass commercial detectors. These results highlight the need to move beyond purely acoustic defenses and account for linguistic variation in the design of robust anti-spoofing systems. All source code will be publicly available.
Abstract:Neuromorphic engineering aims to advance computing by mimicking the brain's efficient processing, where data is encoded as asynchronous temporal events. This eliminates the need for a synchronisation clock and minimises power consumption when no data is present. However, many benchmarks for neuromorphic algorithms primarily focus on spatial features, neglecting the temporal dynamics that are inherent to most sequence-based tasks. This gap may lead to evaluations that fail to fully capture the unique strengths and characteristics of neuromorphic systems. In this paper, we present NeuroMorse, a temporally structured dataset designed for benchmarking neuromorphic learning systems. NeuroMorse converts the top 50 words in the English language into temporal Morse code spike sequences. Despite using only two input spike channels for Morse dots and dashes, complex information is encoded through temporal patterns in the data. The proposed benchmark contains feature hierarchy at multiple temporal scales that test the capacity of neuromorphic algorithms to decompose input patterns into spatial and temporal hierarchies. We demonstrate that our training set is challenging to categorise using a linear classifier and that identifying keywords in the test set is difficult using conventional methods. The NeuroMorse dataset is available at Zenodo, with our accompanying code on GitHub at https://github.com/Ben-E-Walters/NeuroMorse.
Abstract:Modern language models (LMs) have significantly advanced generative modeling in natural language processing (NLP). Despite their success, LMs often struggle with adaptation to new contexts in real-time applications. A promising approach to task adaptation is activation intervention, which steers the LMs' generation process by identifying and manipulating the activations. However, existing interventions are highly dependent on heuristic rules or require many prompt inputs to determine effective interventions. This paper proposes a layer-wise additive activation intervention framework that optimizes the intervention process, thus enhancing the sample efficiency. We benchmark our framework on various datasets, demonstrating improvements in the accuracy of pre-trained LMs and competing intervention baselines.
Abstract:Language models are prone to occasionally undesirable generations, such as harmful or toxic content, despite their impressive capability to produce texts that appear accurate and coherent. This paper presents a new two-stage approach to detect and mitigate undesirable content generations by rectifying activations. First, we train an ensemble of layerwise classifiers to detect undesirable content using activations by minimizing a smooth surrogate of the risk-aware score. Then, for contents that are detected as undesirable, we propose layerwise distributional intervention policies that perturb the attention heads minimally while guaranteeing probabilistically the effectiveness of the intervention. Benchmarks on several language models and datasets show that our method outperforms baselines in reducing the generation of undesirable output.
Abstract:Segmentation has long been essential in computer vision due to its numerous real-world applications. However, most traditional deep learning and machine learning models need help to capture geometric features such as size and convexity of the segmentation targets, resulting in suboptimal outcomes. To resolve this problem, we propose using a CovHuSeg algorithm to solve the problem of kidney glomeruli segmentation. This simple post-processing method is specified to adapt to the segmentation of ball-shaped anomalies, including the glomerulus. Unlike other post-processing methods, the CovHuSeg algorithm assures that the outcome mask does not have holes in it or comes in unusual shapes that are impossible to be the shape of a glomerulus. We illustrate the effectiveness of our method by experimenting with multiple deep-learning models in the context of segmentation on kidney pathology images. The results show that all models have increased accuracy when using the CovHuSeg algorithm.
Abstract:Accurate insect pest recognition plays a critical role in agriculture. It is a challenging problem due to the intricate characteristics of insects. In this paper, we present DeWi, novel learning assistance for insect pest classification. With a one-stage and alternating training strategy, DeWi simultaneously improves several Convolutional Neural Networks in two perspectives: discrimination (by optimizing a triplet margin loss in a supervised training manner) and generalization (via data augmentation). From that, DeWi can learn discriminative and in-depth features of insect pests (deep) yet still generalize well to a large number of insect categories (wide). Experimental results show that DeWi achieves the highest performances on two insect pest classification benchmarks (76.44\% accuracy on the IP102 dataset and 99.79\% accuracy on the D0 dataset, respectively). In addition, extensive evaluations and ablation studies are conducted to thoroughly investigate our DeWi and demonstrate its superiority. Our source code is available at https://github.com/toannguyen1904/DeWi.
Abstract:Physics informed neural networks have been gaining popularity due to their unique ability to incorporate physics laws into data-driven models, ensuring that the predictions are not only consistent with empirical data but also align with domain-specific knowledge in the form of physics equations. The integration of physics principles enables the method to require less data while maintaining the robustness of deep learning in modeling complex dynamical systems. However, current PINN frameworks are not sufficiently mature for real-world ODE systems, especially those with extreme multi-scale behavior such as mosquito population dynamical modelling. In this research, we propose a PINN framework with several improvements for forward and inverse problems for ODE systems with a case study application in modelling the dynamics of mosquito populations. The framework tackles the gradient imbalance and stiff problems posed by mosquito ordinary differential equations. The method offers a simple but effective way to resolve the time causality issue in PINNs by gradually expanding the training time domain until it covers entire domain of interest. As part of a robust evaluation, we conduct experiments using simulated data to evaluate the effectiveness of the approach. Preliminary results indicate that physics-informed machine learning holds significant potential for advancing the study of ecological systems.
Abstract:Learning conditional distributions is challenging because the desired outcome is not a single distribution but multiple distributions that correspond to multiple instances of the covariates. We introduce a novel neural entropic optimal transport method designed to effectively learn generative models of conditional distributions, particularly in scenarios characterized by limited sample sizes. Our method relies on the minimax training of two neural networks: a generative network parametrizing the inverse cumulative distribution functions of the conditional distributions and another network parametrizing the conditional Kantorovich potential. To prevent overfitting, we regularize the objective function by penalizing the Lipschitz constant of the network output. Our experiments on real-world datasets show the effectiveness of our algorithm compared to state-of-the-art conditional distribution learning techniques. Our implementation can be found at https://github.com/nguyenngocbaocmt02/GENTLE.
Abstract:This paper investigates the problem of informative path planning for a mobile robotic sensor network in spatially temporally distributed mapping. The robots are able to gather noisy measurements from an area of interest during their movements to build a Gaussian Process (GP) model of a spatio-temporal field. The model is then utilized to predict the spatio-temporal phenomenon at different points of interest. To spatially and temporally navigate the group of robots so that they can optimally acquire maximal information gains while their connectivity is preserved, we propose a novel multistep prediction informative path planning optimization strategy employing our newly defined local cost functions. By using the dual decomposition method, it is feasible and practical to effectively solve the optimization problem in a distributed manner. The proposed method was validated through synthetic experiments utilizing real-world data sets.
Abstract:Flow matching is a powerful framework for generating high-quality samples in various applications, especially image synthesis. However, the intensive computational demands of these models, especially during the fine-tuning process and sampling processes, pose significant challenges for low-resource scenarios. This paper introduces Bellman Optimal Step-size Straightening (BOSS) technique for distilling flow-matching generative models: it aims specifically for a few-step efficient image sampling while adhering to a computational budget constraint. First, this technique involves a dynamic programming algorithm that optimizes the step sizes of the pretrained network. Then, it refines the velocity network to match the optimal step sizes, aiming to straighten the generation paths. Extensive experimental evaluations across image generation tasks demonstrate the efficacy of BOSS in terms of both resource utilization and image quality. Our results reveal that BOSS achieves substantial gains in efficiency while maintaining competitive sample quality, effectively bridging the gap between low-resource constraints and the demanding requirements of flow-matching generative models. Our paper also fortifies the responsible development of artificial intelligence, offering a more sustainable generative model that reduces computational costs and environmental footprints. Our code can be found at https://github.com/nguyenngocbaocmt02/BOSS.