Alert button
Picture for Alvin Ihsani

Alvin Ihsani

Alert button

DeepEdit: Deep Editable Learning for Interactive Segmentation of 3D Medical Images

Add code
Bookmark button
Alert button
May 18, 2023
Andres Diaz-Pinto, Pritesh Mehta, Sachidanand Alle, Muhammad Asad, Richard Brown, Vishwesh Nath, Alvin Ihsani, Michela Antonelli, Daniel Palkovics, Csaba Pinter, Ron Alkalay, Steve Pieper, Holger R. Roth, Daguang Xu, Prerna Dogra, Tom Vercauteren, Andrew Feng, Abood Quraini, Sebastien Ourselin, M. Jorge Cardoso

Viaarxiv icon

MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images

Add code
Bookmark button
Alert button
Mar 23, 2022
Andres Diaz-Pinto, Sachidanand Alle, Alvin Ihsani, Muhammad Asad, Vishwesh Nath, Fernando Pérez-García, Pritesh Mehta, Wenqi Li, Holger R. Roth, Tom Vercauteren, Daguang Xu, Prerna Dogra, Sebastien Ourselin, Andrew Feng, M. Jorge Cardoso

Figure 1 for MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images
Figure 2 for MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images
Figure 3 for MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images
Figure 4 for MONAI Label: A framework for AI-assisted Interactive Labeling of 3D Medical Images
Viaarxiv icon

Artificial Intelligence in PET: an Industry Perspective

Add code
Bookmark button
Alert button
Jul 14, 2021
Arkadiusz Sitek, Sangtae Ahn, Evren Asma, Adam Chandler, Alvin Ihsani, Sven Prevrhal, Arman Rahmim, Babak Saboury, Kris Thielemans

Figure 1 for Artificial Intelligence in PET: an Industry Perspective
Figure 2 for Artificial Intelligence in PET: an Industry Perspective
Figure 3 for Artificial Intelligence in PET: an Industry Perspective
Figure 4 for Artificial Intelligence in PET: an Industry Perspective
Viaarxiv icon

Federated Learning for Breast Density Classification: A Real-World Implementation

Add code
Bookmark button
Alert button
Sep 17, 2020
Holger R. Roth, Ken Chang, Praveer Singh, Nir Neumark, Wenqi Li, Vikash Gupta, Sharut Gupta, Liangqiong Qu, Alvin Ihsani, Bernardo C. Bizzo, Yuhong Wen, Varun Buch, Meesam Shah, Felipe Kitamura, Matheus Mendonça, Vitor Lavor, Ahmed Harouni, Colin Compas, Jesse Tetreault, Prerna Dogra, Yan Cheng, Selnur Erdal, Richard White, Behrooz Hashemian, Thomas Schultz, Miao Zhang, Adam McCarthy, B. Min Yun, Elshaimaa Sharaf, Katharina V. Hoebel, Jay B. Patel, Bryan Chen, Sean Ko, Evan Leibovitz, Etta D. Pisano, Laura Coombs, Daguang Xu, Keith J. Dreyer, Ittai Dayan, Ram C. Naidu, Mona Flores, Daniel Rubin, Jayashree Kalpathy-Cramer

Figure 1 for Federated Learning for Breast Density Classification: A Real-World Implementation
Figure 2 for Federated Learning for Breast Density Classification: A Real-World Implementation
Figure 3 for Federated Learning for Breast Density Classification: A Real-World Implementation
Figure 4 for Federated Learning for Breast Density Classification: A Real-World Implementation
Viaarxiv icon

GANDALF: Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-tuning for Alzheimer's Disease Diagnosis from MRI

Add code
Bookmark button
Alert button
Aug 10, 2020
Hoo-Chang Shin, Alvin Ihsani, Ziyue Xu, Swetha Mandava, Sharath Turuvekere Sreenivas, Christopher Forster, Jiook Cha, Alzheimer's Disease Neuroimaging Initiative

Figure 1 for GANDALF: Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-tuning for Alzheimer's Disease Diagnosis from MRI
Figure 2 for GANDALF: Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-tuning for Alzheimer's Disease Diagnosis from MRI
Figure 3 for GANDALF: Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-tuning for Alzheimer's Disease Diagnosis from MRI
Figure 4 for GANDALF: Generative Adversarial Networks with Discriminator-Adaptive Loss Fine-tuning for Alzheimer's Disease Diagnosis from MRI
Viaarxiv icon

GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis

Add code
Bookmark button
Alert button
Aug 10, 2020
Hoo-Chang Shin, Alvin Ihsani, Swetha Mandava, Sharath Turuvekere Sreenivas, Christopher Forster, Jiook Cha, Alzheimer's Disease Neuroimaging Initiative

Figure 1 for GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis
Figure 2 for GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis
Figure 3 for GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis
Figure 4 for GANBERT: Generative Adversarial Networks with Bidirectional Encoder Representations from Transformers for MRI to PET synthesis
Viaarxiv icon

4D CNN for semantic segmentation of cardiac volumetric sequences

Add code
Bookmark button
Alert button
Jun 17, 2019
Andriy Myronenko, Dong Yang, Varun Buch, Daguang Xu, Alvin Ihsani, Sean Doyle, Mark Michalski, Neil Tenenholtz, Holger Roth

Figure 1 for 4D CNN for semantic segmentation of cardiac volumetric sequences
Figure 2 for 4D CNN for semantic segmentation of cardiac volumetric sequences
Figure 3 for 4D CNN for semantic segmentation of cardiac volumetric sequences
Figure 4 for 4D CNN for semantic segmentation of cardiac volumetric sequences
Viaarxiv icon