Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Alexandre Galashov

Game Plan: What AI can do for Football, and What Football can do for AI


Nov 18, 2020
Karl Tuyls, Shayegan Omidshafiei, Paul Muller, Zhe Wang, Jerome Connor, Daniel Hennes, Ian Graham, William Spearman, Tim Waskett, Dafydd Steele, Pauline Luc, Adria Recasens, Alexandre Galashov, Gregory Thornton, Romuald Elie, Pablo Sprechmann, Pol Moreno, Kris Cao, Marta Garnelo, Praneet Dutta, Michal Valko, Nicolas Heess, Alex Bridgland, Julien Perolat, Bart De Vylder, Ali Eslami, Mark Rowland, Andrew Jaegle, Remi Munos, Trevor Back, Razia Ahamed, Simon Bouton, Nathalie Beauguerlange, Jackson Broshear, Thore Graepel, Demis Hassabis


  Access Paper or Ask Questions

Behavior Priors for Efficient Reinforcement Learning


Oct 27, 2020
Dhruva Tirumala, Alexandre Galashov, Hyeonwoo Noh, Leonard Hasenclever, Razvan Pascanu, Jonathan Schwarz, Guillaume Desjardins, Wojciech Marian Czarnecki, Arun Ahuja, Yee Whye Teh, Nicolas Heess

* Submitted to Journal of Machine Learning Research (JMLR) 

  Access Paper or Ask Questions

Learning Dexterous Manipulation from Suboptimal Experts


Oct 16, 2020
Rae Jeong, Jost Tobias Springenberg, Jackie Kay, Daniel Zheng, Yuxiang Zhou, Alexandre Galashov, Nicolas Heess, Francesco Nori


  Access Paper or Ask Questions

Temporal Difference Uncertainties as a Signal for Exploration


Oct 05, 2020
Sebastian Flennerhag, Jane X. Wang, Pablo Sprechmann, Francesco Visin, Alexandre Galashov, Steven Kapturowski, Diana L. Borsa, Nicolas Heess, Andre Barreto, Razvan Pascanu

* 8 pages, 11 figures, 5 tables 

  Access Paper or Ask Questions

Information Theoretic Meta Learning with Gaussian Processes


Oct 05, 2020
Michalis K. Titsias, Sotirios Nikoloutsopoulos, Alexandre Galashov

* 26 pages, 5 figures 

  Access Paper or Ask Questions

Importance Weighted Policy Learning and Adaption


Sep 10, 2020
Alexandre Galashov, Jakub Sygnowski, Guillaume Desjardins, Jan Humplik, Leonard Hasenclever, Rae Jeong, Yee Whye Teh, Nicolas Heess


  Access Paper or Ask Questions

Task Agnostic Continual Learning via Meta Learning


Jun 12, 2019
Xu He, Jakub Sygnowski, Alexandre Galashov, Andrei A. Rusu, Yee Whye Teh, Razvan Pascanu


  Access Paper or Ask Questions

Meta reinforcement learning as task inference


May 15, 2019
Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A. Ortega, Yee Whye Teh, Nicolas Heess


  Access Paper or Ask Questions

Information asymmetry in KL-regularized RL


May 03, 2019
Alexandre Galashov, Siddhant M. Jayakumar, Leonard Hasenclever, Dhruva Tirumala, Jonathan Schwarz, Guillaume Desjardins, Wojciech M. Czarnecki, Yee Whye Teh, Razvan Pascanu, Nicolas Heess

* Accepted as a conference paper at ICLR 2019 

  Access Paper or Ask Questions

Meta-Learning surrogate models for sequential decision making


Mar 28, 2019
Alexandre Galashov, Jonathan Schwarz, Hyunjik Kim, Marta Garnelo, David Saxton, Pushmeet Kohli, S. M. Ali Eslami, Yee Whye Teh


  Access Paper or Ask Questions

Exploiting Hierarchy for Learning and Transfer in KL-regularized RL


Mar 18, 2019
Dhruva Tirumala, Hyeonwoo Noh, Alexandre Galashov, Leonard Hasenclever, Arun Ahuja, Greg Wayne, Razvan Pascanu, Yee Whye Teh, Nicolas Heess


  Access Paper or Ask Questions

Neural probabilistic motor primitives for humanoid control


Jan 15, 2019
Josh Merel, Leonard Hasenclever, Alexandre Galashov, Arun Ahuja, Vu Pham, Greg Wayne, Yee Whye Teh, Nicolas Heess

* Accepted as a conference paper at ICLR 2019 

  Access Paper or Ask Questions