What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
Jun 14, 2025
Abstract:Despite recent advancements in music generation systems, their application in film production remains limited, as they struggle to capture the nuances of real-world filmmaking, where filmmakers consider multiple factors-such as visual content, dialogue, and emotional tone-when selecting or composing music for a scene. This limitation primarily stems from the absence of comprehensive datasets that integrate these elements. To address this gap, we introduce Open Screen Sound Library (OSSL), a dataset consisting of movie clips from public domain films, totaling approximately 36.5 hours, paired with high-quality soundtracks and human-annotated mood information. To demonstrate the effectiveness of our dataset in improving the performance of pre-trained models on film music generation tasks, we introduce a new video adapter that enhances an autoregressive transformer-based text-to-music model by adding video-based conditioning. Our experimental results demonstrate that our proposed approach effectively enhances MusicGen-Medium in terms of both objective measures of distributional and paired fidelity, and subjective compatibility in mood and genre. The dataset and code are available at https://havenpersona.github.io/ossl-v1.
* ISMIR 2025 regular paper. Dataset and code available at
https://havenpersona.github.io/ossl-v1
Via

Jun 13, 2025
Abstract:Text-to-audio diffusion models produce high-quality and diverse music but many, if not most, of the SOTA models lack the fine-grained, time-varying controls essential for music production. ControlNet enables attaching external controls to a pre-trained generative model by cloning and fine-tuning its encoder on new conditionings. However, this approach incurs a large memory footprint and restricts users to a fixed set of controls. We propose a lightweight, modular architecture that considerably reduces parameter count while matching ControlNet in audio quality and condition adherence. Our method offers greater flexibility and significantly lower memory usage, enabling more efficient training and deployment of independent controls. We conduct extensive objective and subjective evaluations and provide numerous audio examples on the accompanying website at https://lightlatentcontrol.github.io
* Accepted at ISMIR 2025
Via

Jun 11, 2025
Abstract:We present a method for fine-grained control over music generation through inference-time interventions on an autoregressive generative music transformer called MusicGen. Our approach enables timbre transfer, style transfer, and genre fusion by steering the residual stream using weights of linear probes trained on it, or by steering the attention layer activations in a similar manner. We observe that modelling this as a regression task provides improved performance, hypothesizing that the mean-squared-error better preserve meaningful directional information in the activation space. Combined with the global conditioning offered by text prompts in MusicGen, our method provides both global and local control over music generation. Audio samples illustrating our method are available at our demo page.
Via

Jun 12, 2025
Abstract:While being disturbed by environmental noises, the acoustic masking technique is a conventional way to reduce the annoyance in audio engineering that seeks to cover up the noises with other dominant yet less intrusive sounds. However, misalignment between the dominant sound and the noise-such as mismatched downbeats-often requires an excessive volume increase to achieve effective masking. Motivated by recent advances in cross-modal generation, in this work, we introduce an alternative method to acoustic masking, aiming to reduce the noticeability of environmental noises by blending them into personalized music generated based on user-provided text prompts. Following the paradigm of music generation using mel-spectrogram representations, we propose a Blending Noises into Personalized Music (BNMusic) framework with two key stages. The first stage synthesizes a complete piece of music in a mel-spectrogram representation that encapsulates the musical essence of the noise. In the second stage, we adaptively amplify the generated music segment to further reduce noise perception and enhance the blending effectiveness, while preserving auditory quality. Our experiments with comprehensive evaluations on MusicBench, EPIC-SOUNDS, and ESC-50 demonstrate the effectiveness of our framework, highlighting the ability to blend environmental noise with rhythmically aligned, adaptively amplified, and enjoyable music segments, minimizing the noticeability of the noise, thereby improving overall acoustic experiences.
Via

Jun 12, 2025
Abstract:Music-to-dance generation aims to synthesize human dance motion conditioned on musical input. Despite recent progress, significant challenges remain due to the semantic gap between music and dance motion, as music offers only abstract cues, such as melody, groove, and emotion, without explicitly specifying the physical movements. Moreover, a single piece of music can produce multiple plausible dance interpretations. This one-to-many mapping demands additional guidance, as music alone provides limited information for generating diverse dance movements. The challenge is further amplified by the scarcity of paired music and dance data, which restricts the model\^a\u{A}\'Zs ability to learn diverse dance patterns. In this paper, we introduce DanceChat, a Large Language Model (LLM)-guided music-to-dance generation approach. We use an LLM as a choreographer that provides textual motion instructions, offering explicit, high-level guidance for dance generation. This approach goes beyond implicit learning from music alone, enabling the model to generate dance that is both more diverse and better aligned with musical styles. Our approach consists of three components: (1) an LLM-based pseudo instruction generation module that produces textual dance guidance based on music style and structure, (2) a multi-modal feature extraction and fusion module that integrates music, rhythm, and textual guidance into a shared representation, and (3) a diffusion-based motion synthesis module together with a multi-modal alignment loss, which ensures that the generated dance is aligned with both musical and textual cues. Extensive experiments on AIST++ and human evaluations show that DanceChat outperforms state-of-the-art methods both qualitatively and quantitatively.
Via

Jun 11, 2025
Abstract:Recent progress in text-to-music generation has enabled models to synthesize high-quality musical segments, full compositions, and even respond to fine-grained control signals, e.g. chord progressions. State-of-the-art (SOTA) systems differ significantly across many dimensions, such as training datasets, modeling paradigms, and architectural choices. This diversity complicates efforts to evaluate models fairly and pinpoint which design choices most influence performance. While factors like data and architecture are important, in this study we focus exclusively on the modeling paradigm. We conduct a systematic empirical analysis to isolate its effects, offering insights into associated trade-offs and emergent behaviors that can guide future text-to-music generation systems. Specifically, we compare the two arguably most common modeling paradigms: Auto-Regressive decoding and Conditional Flow-Matching. We conduct a controlled comparison by training all models from scratch using identical datasets, training configurations, and similar backbone architectures. Performance is evaluated across multiple axes, including generation quality, robustness to inference configurations, scalability, adherence to both textual and temporally aligned conditioning, and editing capabilities in the form of audio inpainting. This comparative study sheds light on distinct strengths and limitations of each paradigm, providing actionable insights that can inform future architectural and training decisions in the evolving landscape of text-to-music generation. Audio sampled examples are available at: https://huggingface.co/spaces/ortal1602/ARvsFM
Via

Jun 16, 2025
Abstract:This study explores the extent to which national music preferences reflect underlying cultural values. We collected long-term popular music data from YouTube Music Charts across 62 countries, encompassing both Western and non-Western regions, and extracted audio embeddings using the CLAP model. To complement these quantitative representations, we generated semantic captions for each track using LP-MusicCaps and GPT-based summarization. Countries were clustered based on contrastive embeddings that highlight deviations from global musical norms. The resulting clusters were projected into a two-dimensional space via t-SNE for visualization and evaluated against cultural zones defined by the World Values Survey (WVS). Statistical analyses, including MANOVA and chi-squared tests, confirmed that music-based clusters exhibit significant alignment with established cultural groupings. Furthermore, residual analysis revealed consistent patterns of overrepresentation, suggesting non-random associations between specific clusters and cultural zones. These findings indicate that national-level music preferences encode meaningful cultural signals and can serve as a proxy for understanding global cultural boundaries.
Via

Jun 14, 2025
Abstract:Recent advances in audio-text large language models (LLMs) have opened new possibilities for music understanding and generation. However, existing benchmarks are limited in scope, often relying on simplified tasks or multi-choice evaluations that fail to reflect the complexity of real-world music analysis. We reinterpret a broad range of traditional MIR annotations as instruction-following formats and introduce CMI-Bench, a comprehensive music instruction following benchmark designed to evaluate audio-text LLMs on a diverse set of music information retrieval (MIR) tasks. These include genre classification, emotion regression, emotion tagging, instrument classification, pitch estimation, key detection, lyrics transcription, melody extraction, vocal technique recognition, instrument performance technique detection, music tagging, music captioning, and (down)beat tracking: reflecting core challenges in MIR research. Unlike previous benchmarks, CMI-Bench adopts standardized evaluation metrics consistent with previous state-of-the-art MIR models, ensuring direct comparability with supervised approaches. We provide an evaluation toolkit supporting all open-source audio-textual LLMs, including LTU, Qwen-audio, SALMONN, MusiLingo, etc. Experiment results reveal significant performance gaps between LLMs and supervised models, along with their culture, chronological and gender bias, highlighting the potential and limitations of current models in addressing MIR tasks. CMI-Bench establishes a unified foundation for evaluating music instruction following, driving progress in music-aware LLMs.
* Accepted by ISMIR 2025
Via

Jun 13, 2025
Abstract:Dance performance traditionally follows a unidirectional relationship where movement responds to music. While AI has advanced in various creative domains, its application in dance has primarily focused on generating choreography from musical input. We present a system that enables dancers to dynamically shape musical environments through their movements. Our multi-modal architecture creates a coherent musical composition by intelligently combining pre-recorded musical clips in response to dance movements, establishing a bidirectional creative partnership where dancers function as both performers and composers. Through correlation analysis of performance data, we demonstrate emergent communication patterns between movement qualities and audio features. This approach reconceptualizes the role of AI in performing arts as a responsive collaborator that expands possibilities for both professional dance performance and improvisational artistic expression across broader populations.
* Accepted for publication at ICCC 2025 (International Conference on
Computational Creativity)
Via

Jun 08, 2025
Abstract:The ultimate purpose of generative music AI is music production. The studio-lab, a social form within the art-science branch of cross-disciplinarity, is a way to advance music production with AI music models. During a studio-lab experiment involving researchers, music producers, and an AI model for music generating bass-like audio, it was observed that the producers used the model's output to convey two or more pitches with a single harmonic complex tone, which in turn revealed that the model had learned to generate structured and coherent simultaneous melodic lines using monophonic sequences of harmonic complex tones. These findings prompt a reconsideration of the long-standing debate on whether humans can perceive harmonics as distinct pitches and highlight how generative AI can not only enhance musical creativity but also contribute to a deeper understanding of music.
* 15th International Workshop on Machine Learning and Music, September
9, 2024, Vilnius, Lithuania
Via
