Abstract:This study explores the extent to which national music preferences reflect underlying cultural values. We collected long-term popular music data from YouTube Music Charts across 62 countries, encompassing both Western and non-Western regions, and extracted audio embeddings using the CLAP model. To complement these quantitative representations, we generated semantic captions for each track using LP-MusicCaps and GPT-based summarization. Countries were clustered based on contrastive embeddings that highlight deviations from global musical norms. The resulting clusters were projected into a two-dimensional space via t-SNE for visualization and evaluated against cultural zones defined by the World Values Survey (WVS). Statistical analyses, including MANOVA and chi-squared tests, confirmed that music-based clusters exhibit significant alignment with established cultural groupings. Furthermore, residual analysis revealed consistent patterns of overrepresentation, suggesting non-random associations between specific clusters and cultural zones. These findings indicate that national-level music preferences encode meaningful cultural signals and can serve as a proxy for understanding global cultural boundaries.
Abstract:This paper addresses imitation learning for motion prediction problem in autonomous driving, especially in multi-agent setting. Different from previous methods based on GAN, we present the conditional latent ordinary differential equation (cLODE) to leverage both the generative strength of conditional VAE and the continuous representation of neural ODE. Our network architecture is inspired from the Latent-ODE model. The experiment shows that our method outperform the baseline methods in the simulation of multi-agent driving and is very efficient in term of GPU memory consumption. Our code and docker image are publicly available: https://github.com/TruongKhang/cLODE; https://hub.docker.com/r/kim4375731/clode.