What is music generation? Music generation is the task of generating music or music-like sounds from a model or algorithm.
Papers and Code
May 08, 2025
Abstract:Reactive dance generation (RDG) produces follower movements conditioned on guiding dancer and music while ensuring spatial coordination and temporal coherence. However, existing methods overemphasize global constraints and optimization, overlooking local information, such as fine-grained spatial interactions and localized temporal context. Therefore, we present ReactDance, a novel diffusion-based framework for high-fidelity RDG with long-term coherence and multi-scale controllability. Unlike existing methods that struggle with interaction fidelity, synchronization, and temporal consistency in duet synthesis, our approach introduces two key innovations: 1)Group Residual Finite Scalar Quantization (GRFSQ), a multi-scale disentangled motion representation that captures interaction semantics from coarse body rhythms to fine-grained joint dynamics, and 2)Blockwise Local Context (BLC), a sampling strategy eliminating error accumulation in long sequence generation via local block causal masking and periodic positional encoding. Built on the decoupled multi-scale GRFSQ representation, we implement a diffusion model withLayer-Decoupled Classifier-free Guidance (LDCFG), allowing granular control over motion semantics across scales. Extensive experiments on standard benchmarks demonstrate that ReactDance surpasses existing methods, achieving state-of-the-art performance.
Via

Apr 18, 2025
Abstract:With the rise of artificial intelligence in recent years, there has been a rapid increase in its application towards creative domains, including music. There exist many systems built that apply machine learning approaches to the problem of computer-assisted music composition (CAC). Calliope is a web application that assists users in performing a variety of multi-track composition tasks in the symbolic domain. The user can upload (Musical Instrument Digital Interface) MIDI files, visualize and edit MIDI tracks, and generate partial (via bar in-filling) or complete multi-track content using the Multi-Track Music Machine (MMM). Generation of new MIDI excerpts can be done in batch and can be combined with active playback listening for an enhanced assisted-composition workflow. The user can export generated MIDI materials or directly stream MIDI playback from the system to their favorite Digital Audio Workstation (DAW). We present a demonstration of the system, its features, generative parameters and describe the co-creative workflows that it affords.
* 5 pages, 5 figures, first published at the 13th International
Conference on Computational Creativity (ICCC 2022), Bozen-Bolzano, Italy
Via

Apr 10, 2025
Abstract:Music profoundly enhances video production by improving quality, engagement, and emotional resonance, sparking growing interest in video-to-music generation. Despite recent advances, existing approaches remain limited in specific scenarios or undervalue the visual dynamics. To address these limitations, we focus on tackling the complexity of dynamics and resolving temporal misalignment between video and music representations. To this end, we propose DyViM, a novel framework to enhance dynamics modeling for video-to-music generation. Specifically, we extract frame-wise dynamics features via a simplified motion encoder inherited from optical flow methods, followed by a self-attention module for aggregation within frames. These dynamic features are then incorporated to extend existing music tokens for temporal alignment. Additionally, high-level semantics are conveyed through a cross-attention mechanism, and an annealing tuning strategy benefits to fine-tune well-trained music decoders efficiently, therefore facilitating seamless adaptation. Extensive experiments demonstrate DyViM's superiority over state-of-the-art (SOTA) methods.
* Under review
Via

Apr 12, 2025
Abstract:In recent years, text-to-audio systems have achieved remarkable success, enabling the generation of complete audio segments directly from text descriptions. While these systems also facilitate music creation, the element of human creativity and deliberate expression is often limited. In contrast, the present work allows composers, arrangers, and performers to create the basic building blocks for music creation: audio of individual musical notes for use in electronic instruments and DAWs. Through text prompts, the user can specify the timbre characteristics of the audio. We introduce a system that combines a latent diffusion model and multi-modal contrastive learning to generate musical timbres conditioned on text descriptions. By jointly generating the magnitude and phase of the spectrogram, our method eliminates the need for subsequently running a phase retrieval algorithm, as related methods do. Audio examples, source code, and a web app are available at https://wxuanyuan.github.io/Musical-Note-Generation/
* 10 pages, 5 figures
Via

Apr 18, 2025
Abstract:With the rise of artificial intelligence (AI), there has been increasing interest in human-AI co-creation in a variety of artistic domains including music as AI-driven systems are frequently able to generate human-competitive artifacts. Now, the implications of such systems for musical practice are being investigated. We report on a thorough evaluation of the user adoption of the Multi-Track Music Machine (MMM) as a co-creative AI tool for music composers. To do this, we integrate MMM into Cubase, a popular Digital Audio Workstation (DAW) by Steinberg, by producing a "1-parameter" plugin interface named MMM-Cubase (MMM-C), which enables human-AI co-composition. We contribute a methodological assemblage as a 3-part mixed method study measuring usability, user experience and technology acceptance of the system across two groups of expert-level composers: hobbyists and professionals. Results show positive usability and acceptance scores. Users report experiences of novelty, surprise and ease of use from using the system, and limitations on controllability and predictability of the interface when generating music. Findings indicate no significant difference between the two user groups.
* 10 pages, 6 figures, 1 table, first published at the 32nd
International Joint Conference on Artificial Intelligence (IJCAI 2023),
Macao, China
Via

Apr 08, 2025
Abstract:Loops--short audio segments designed for seamless repetition--are central to many music genres, particularly those rooted in dance and electronic styles. However, current generative music models struggle to produce truly loopable audio, as generating a short waveform alone does not guarantee a smooth transition from its endpoint back to its start, often resulting in audible discontinuities. Loops--short audio segments designed for seamless repetition--are central to many music genres, particularly those rooted in dance and electronic styles. However, current generative music models struggle to produce truly loopable audio, as generating a short waveform alone does not guarantee a smooth transition from its endpoint back to its start, often resulting in audible discontinuities. We address this gap by modifying a non-autoregressive model (MAGNeT) to generate tokens in a circular pattern, letting the model attend to the beginning of the audio when creating its ending. This inference-only approach results in generations that are aware of future context and loop naturally, without the need for any additional training or data. We evaluate the consistency of loop transitions by computing token perplexity around the seam of the loop, observing a 55% improvement. Blind listening tests further confirm significant perceptual gains over baseline methods, improving mean ratings by 70%. Taken together, these results highlight the effectiveness of inference-only approaches in improving generative models and underscore the advantages of non-autoregressive methods for context-aware music generation.
Via

Apr 07, 2025
Abstract:While music remains a challenging domain for generative models like Transformers, a two-pronged approach has recently proved successful: inserting musically-relevant structural information into the positional encoding (PE) module and using kernel approximation techniques based on Random Fourier Features (RFF) to lower the computational cost from quadratic to linear. Yet, it is not clear how such RFF-based efficient PEs compare with those based on rotation matrices, such as Rotary Positional Encoding (RoPE). In this paper, we present a unified framework based on kernel methods to analyze both families of efficient PEs. We use this framework to develop a novel PE method called RoPEPool, capable of extracting causal relationships from temporal sequences. Using RFF-based PEs and rotation-based PEs, we demonstrate how seemingly disparate PEs can be jointly studied by considering the content-context interactions they induce. For empirical validation, we use a symbolic music generation task, namely, melody harmonization. We show that RoPEPool, combined with highly-informative structural priors, outperforms all methods.
Via

Apr 03, 2025
Abstract:This paper introduces four different artificial intelligence algorithms for music generation and aims to compare these methods not only based on the aesthetic quality of the generated music but also on their suitability for specific applications. The first set of melodies is produced by a slightly modified visual transformer neural network that is used as a language model. The second set of melodies is generated by combining chat sonification with a classic transformer neural network (the same method of music generation is presented in a previous research), the third set of melodies is generated by combining the Schillinger rhythm theory together with a classic transformer neural network, and the fourth set of melodies is generated using GPT3 transformer provided by OpenAI. A comparative analysis is performed on the melodies generated by these approaches and the results indicate that significant differences can be observed between them and regarding the aesthetic value of them, GPT3 produced the most pleasing melodies, and the newly introduced Schillinger method proved to generate better sounding music than previous sonification methods.
* U.P.B. Scientific Bulletin, Series C, Vol. 85, Issue 4, 2023
Via

Apr 01, 2025
Abstract:Multi-modal music generation, using multiple modalities like images, video, and text alongside musical scores and audio as guidance, is an emerging research area with broad applications. This paper reviews this field, categorizing music generation systems from the perspective of modalities. It covers modality representation, multi-modal data alignment, and their utilization to guide music generation. We also discuss current datasets and evaluation methods. Key challenges in this area include effective multi-modal integration, large-scale comprehensive datasets, and systematic evaluation methods. Finally, we provide an outlook on future research directions focusing on multi-modal fusion, alignment, data, and evaluation.
Via

May 05, 2025
Abstract:Independent learners often struggle with sustaining focus and emotional regulation in unstructured or distracting settings. Although some rely on ambient aids such as music, ASMR, or visual backgrounds to support concentration, these tools are rarely integrated into cohesive, learner-centered systems. Moreover, existing educational technologies focus primarily on content adaptation and feedback, overlooking the emotional and sensory context in which learning takes place. Large language models have demonstrated powerful multimodal capabilities including the ability to generate and adapt text, audio, and visual content. Educational research has yet to fully explore their potential in creating personalized audiovisual learning environments. To address this gap, we introduce an AI-powered system that uses LLMs to generate personalized multisensory study environments. Users select or generate customized visual themes (e.g., abstract vs. realistic, static vs. animated) and auditory elements (e.g., white noise, ambient ASMR, familiar vs. novel sounds) to create immersive settings aimed at reducing distraction and enhancing emotional stability. Our primary research question investigates how combinations of personalized audiovisual elements affect learner cognitive load and engagement. Using a mixed-methods design that incorporates biometric measures and performance outcomes, this study evaluates the effectiveness of LLM-driven sensory personalization. The findings aim to advance emotionally responsive educational technologies and extend the application of multimodal LLMs into the sensory dimension of self-directed learning.
Via
