Abstract:Reactive dance generation (RDG) produces follower movements conditioned on guiding dancer and music while ensuring spatial coordination and temporal coherence. However, existing methods overemphasize global constraints and optimization, overlooking local information, such as fine-grained spatial interactions and localized temporal context. Therefore, we present ReactDance, a novel diffusion-based framework for high-fidelity RDG with long-term coherence and multi-scale controllability. Unlike existing methods that struggle with interaction fidelity, synchronization, and temporal consistency in duet synthesis, our approach introduces two key innovations: 1)Group Residual Finite Scalar Quantization (GRFSQ), a multi-scale disentangled motion representation that captures interaction semantics from coarse body rhythms to fine-grained joint dynamics, and 2)Blockwise Local Context (BLC), a sampling strategy eliminating error accumulation in long sequence generation via local block causal masking and periodic positional encoding. Built on the decoupled multi-scale GRFSQ representation, we implement a diffusion model withLayer-Decoupled Classifier-free Guidance (LDCFG), allowing granular control over motion semantics across scales. Extensive experiments on standard benchmarks demonstrate that ReactDance surpasses existing methods, achieving state-of-the-art performance.
Abstract:Recently, multimodal large models (MLLMs) have demonstrated exceptional capabilities in visual understanding and reasoning across various vision-language tasks. However, MLLMs usually perform poorly in zero-shot medical disease recognition, as they do not fully exploit the captured features and available medical knowledge. To address this challenge, we propose LLaVA-RadZ, a simple yet effective framework for zero-shot medical disease recognition. Specifically, we design an end-to-end training strategy, termed Decoding-Side Feature Alignment Training (DFAT) to take advantage of the characteristics of the MLLM decoder architecture and incorporate modality-specific tokens tailored for different modalities, which effectively utilizes image and text representations and facilitates robust cross-modal alignment. Additionally, we introduce a Domain Knowledge Anchoring Module (DKAM) to exploit the intrinsic medical knowledge of large models, which mitigates the category semantic gap in image-text alignment. DKAM improves category-level alignment, allowing for accurate disease recognition. Extensive experiments on multiple benchmarks demonstrate that our LLaVA-RadZ significantly outperforms traditional MLLMs in zero-shot disease recognition and exhibits the state-of-the-art performance compared to the well-established and highly-optimized CLIP-based approaches.