Topic:Time Series Analysis
What is Time Series Analysis? Time series analysis comprises statistical methods for analyzing a sequence of data points collected over an interval of time to identify interesting patterns and trends.
Papers and Code
May 05, 2025
Abstract:Generative AI systems have revolutionized human interaction by enabling natural language-based coding and problem solving. However, the inherent ambiguity of natural language often leads to imprecise instructions, forcing users to iteratively test, correct, and resubmit their prompts. We propose an iterative approach that systematically narrows down these ambiguities through a structured series of clarification questions and alternative solution proposals, illustrated with input/output examples as well. Once every uncertainty is resolved, a final, precise solution is generated. Evaluated on a diverse dataset spanning coding, data analysis, and creative writing, our method demonstrates superior accuracy, competitive resolution times, and higher user satisfaction compared to conventional one-shot solutions, which typically require multiple manual iterations to achieve a correct output.
Via

Apr 30, 2025
Abstract:This study explores the intersection of fashion trends and social media sentiment through computational analysis of Twitter data using the T4SA (Twitter for Sentiment Analysis) dataset. By applying natural language processing and machine learning techniques, we examine how sentiment patterns in fashion-related social media conversations can serve as predictors for emerging fashion trends. Our analysis involves the identification and categorization of fashion-related content, sentiment classification with improved normalization techniques, time series decomposition, statistically validated causal relationship modeling, cross-platform sentiment comparison, and brand-specific sentiment analysis. Results indicate correlations between sentiment patterns and fashion theme popularity, with accessories and streetwear themes showing statistically significant rising trends. The Granger causality analysis establishes sustainability and streetwear as primary trend drivers, showing bidirectional relationships with several other themes. The findings demonstrate that social media sentiment analysis can serve as an effective early indicator of fashion trend trajectories when proper statistical validation is applied. Our improved predictive model achieved 78.35% balanced accuracy in sentiment classification, establishing a reliable foundation for trend prediction across positive, neutral, and negative sentiment categories.
* 13 pages
Via

May 05, 2025
Abstract:Taskmaster is a British television show that combines comedic performance with a formal scoring system. Despite the appearance of structured competition, it remains unclear whether scoring dynamics contribute meaningfully to audience engagement. We conducted a statistical analysis of 162 episodes across 18 series, using fifteen episode-level metrics to quantify rank volatility, point spread, lead changes, and winner dominance. None of these metrics showed a significant association with IMDb ratings, even after controlling for series effects. Long-term trends suggest that average points have increased over time, while volatility has slightly declined and rank spread has remained stable. These patterns indicate an attempt to enhance competitive visibility without altering the show's structural equilibrium. We also analyzed contestant rank trajectories and identified five recurring archetypes describing performance styles. These patterns suggest that viewer interest is shaped more by contestant behavior than by game mechanics.
* 29 pages, includes 5 figures and 18 supplementary visualizations.
Submitted as a preprint. Code and data available at github dot com slash
silverdavi slash taskmaster-stats
Via

May 09, 2025
Abstract:The physical load of jumps plays a critical role in injury prevention for volleyball players. However, manual video analysis of jump activities is time-intensive and costly, requiring significant effort and expensive hardware setups. The advent of the inertial measurement unit (IMU) and machine learning algorithms offers a convenient and efficient alternative. Despite this, previous research has largely focused on either jump classification or physical load estimation, leaving a gap in integrated solutions. This study aims to present a pipeline to automatically detect jumps and predict heights using data from a waist-worn IMU. The pipeline leverages a Multi-Stage Temporal Convolutional Network (MS-TCN) to detect jump segments in time-series data and classify the specific jump category. Subsequently, jump heights are estimated using three downstream regression machine learning models based on the identified segments. Our method is verified on a dataset comprising 10 players and 337 jumps. Compared to the result of VERT in height estimation (R-squared=-1.53), a commercial device commonly used in jump landing tasks, our method not only accurately identifies jump activities and their specific types (F1-score=0.90) but also demonstrates superior performance in height prediction (R-squared=0.50). This integrated solution offers a promising tool for monitoring physical load and mitigating injury risk in volleyball players.
* submitted to EMBC conference 2025 (accepeted)
Via

Apr 18, 2025
Abstract:Financial prediction is a complex and challenging task of time series analysis and signal processing, expected to model both short-term fluctuations and long-term temporal dependencies. Transformers have remarkable success mostly in natural language processing using attention mechanism, which also influenced the time series community. The ability to capture both short and long-range dependencies helps to understand the financial market and to recognize price patterns, leading to successful applications of Transformers in stock prediction. Although, the previous research predominantly focuses on individual features and singular predictions, that limits the model's ability to understand broader market trends. In reality, within sectors such as finance and technology, companies belonging to the same industry often exhibit correlated stock price movements. In this paper, we develop a novel neural network architecture by integrating Time2Vec with the Encoder of the Transformer model. Based on the study of different markets, we propose a novel correlation feature selection method. Through a comprehensive fine-tuning of multiple hyperparameters, we conduct a comparative analysis of our results against benchmark models. We conclude that our method outperforms other state-of-the-art encoding methods such as positional encoding, and we also conclude that selecting correlation features enhance the accuracy of predicting multiple stock prices.
* 5 pages, currently under review at Eusipco 2025
Via

May 05, 2025
Abstract:Predicting financial time series presents significant challenges due to inherent low signal-to-noise ratios and intricate temporal patterns. Traditional machine learning models exhibit limitations in this forecasting task constrained by their restricted model capacity. Recent advances in large language models (LLMs), with their greatly expanded parameter spaces, demonstrate promising potential for modeling complex dependencies in temporal sequences. However, existing LLM-based approaches typically focus on fixed-length patch analysis due to the Transformer architecture, ignoring market data's multi-scale pattern characteristics. In this study, we propose $LLM4FTS$, a novel framework that enhances LLM capabilities for temporal sequence modeling through learnable patch segmentation and dynamic wavelet convolution modules. Specifically,we first employ K-means++ clustering based on DTW distance to identify scale-invariant patterns in market data. Building upon pattern recognition results, we introduce adaptive patch segmentation that partitions temporal sequences while preserving maximal pattern integrity. To accommodate time-varying frequency characteristics, we devise a dynamic wavelet convolution module that emulates discrete wavelet transformation with enhanced flexibility in capturing time-frequency features. These three modules work together to improve large language model's ability to handle scale-invariant patterns in financial time series. Extensive experiments on real-world financial datasets substantiate the framework's efficacy, demonstrating superior performance in capturing complex market patterns and achieving state-of-the-art results in stock return prediction. The successful deployment in practical trading systems confirms its real-world applicability, representing a significant advancement in LLM applications for financial forecasting.
* 12 pages, 9figures
Via

May 04, 2025
Abstract:Since the advent of the ``Neural Ordinary Differential Equation (Neural ODE)'' paper, learning ODEs with deep learning has been applied to system identification, time-series forecasting, and related areas. Exploiting the diffeomorphic nature of ODE solution maps, neural ODEs has also enabled their use in generative modeling. Despite the rich potential to incorporate various kinds of physical information, training Neural ODEs remains challenging in practice. This study demonstrates, through the simplest one-dimensional linear model, why training Neural ODEs is difficult. We then propose a new stabilization method and provide an analytical convergence analysis. The insights and techniques presented here serve as a concise tutorial for researchers beginning work on Neural ODEs.
* Under review
Via

May 05, 2025
Abstract:Multimodal learning, which integrates diverse data sources such as images, text, and structured data, has proven superior to unimodal counterparts in high-stakes decision-making. However, while performance gains remain the gold standard for evaluating multimodal systems, concerns around bias and robustness are frequently overlooked. In this context, this paper explores two key research questions (RQs): (i) RQ1 examines whether adding a modality con-sistently enhances performance and investigates its role in shaping fairness measures, assessing whether it mitigates or amplifies bias in multimodal models; (ii) RQ2 investigates the impact of missing modalities at inference time, analyzing how multimodal models generalize in terms of both performance and fairness. Our analysis reveals that incorporating new modalities during training consistently enhances the performance of multimodal models, while fairness trends exhibit variability across different evaluation measures and datasets. Additionally, the absence of modalities at inference degrades performance and fairness, raising concerns about its robustness in real-world deployment. We conduct extensive experiments using multimodal healthcare datasets containing images, time series, and structured information to validate our findings.
* CVPR 2025 Second Workshop on Responsible Generative AI
Via

Apr 18, 2025
Abstract:Environmental crisis remains a global challenge that affects public health and environmental quality. Despite extensive research, accurately forecasting environmental change trends to inform targeted policies and assess prediction efficiency remains elusive. Conventional methods for multivariate time series (MTS) analysis often fail to capture the complex dynamics of environmental change. To address this, we introduce an innovative meta-learning MTS model, MMformer with Adaptive Transferable Multi-head Attention (ATMA), which combines self-attention and meta-learning for enhanced MTS forecasting. Specifically, MMformer is used to model and predict the time series of seven air quality indicators across 331 cities in China from January 2018 to June 2021 and the time series of precipitation and temperature at 2415 monitoring sites during the summer (276 days) from 2012 to 2014, validating the network's ability to perform and forecast MTS data successfully. Experimental results demonstrate that in these datasets, the MMformer model reaching SOTA outperforms iTransformer, Transformer, and the widely used traditional time series prediction algorithm SARIMAX in the prediction of MTS, reducing by 50\% in MSE, 20\% in MAE as compared to others in air quality datasets, reducing by 20\% in MAPE except SARIMAX. Compared with Transformer and SARIMAX in the climate datasets, MSE, MAE, and MAPE are decreased by 30\%, and there is an improvement compared to iTransformer. This approach represents a significant advance in our ability to forecast and respond to dynamic environmental quality challenges in diverse urban and rural environments. Its predictive capabilities provide valuable public health and environmental quality information, informing targeted interventions.
Via

Apr 14, 2025
Abstract:Time series classification (TSC) is an important task in time series analysis. Existing TSC methods mainly train on each single domain separately, suffering from a degradation in accuracy when the samples for training are insufficient in certain domains. The pre-training and fine-tuning paradigm provides a promising direction for solving this problem. However, time series from different domains are substantially divergent, which challenges the effective pre-training on multi-source data and the generalization ability of pre-trained models. To handle this issue, we introduce Augmented Series and Image Contrastive Learning for Time Series Classification (AimTS), a pre-training framework that learns generalizable representations from multi-source time series data. We propose a two-level prototype-based contrastive learning method to effectively utilize various augmentations in multi-source pre-training, which learns representations for TSC that can be generalized to different domains. In addition, considering augmentations within the single time series modality are insufficient to fully address classification problems with distribution shift, we introduce the image modality to supplement structural information and establish a series-image contrastive learning to improve the generalization of the learned representations for TSC tasks. Extensive experiments show that after multi-source pre-training, AimTS achieves good generalization performance, enabling efficient learning and even few-shot learning on various downstream TSC datasets.
Via
