What is Object Detection? Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Papers and Code
Jul 01, 2025
Abstract:Independently trained vision and language models inhabit disjoint representational spaces, shaped by their respective modalities, objectives, and architectures. Yet an emerging hypothesis - the Platonic Representation Hypothesis - suggests that such models may nonetheless converge toward a shared statistical model of reality. This compatibility, if it exists, raises a fundamental question: can we move beyond post-hoc statistical detection of alignment and explicitly optimize for it between such disjoint representations? We cast this Platonic alignment problem as a multi-objective optimization task - preserve each modality's native structure while aligning for mutual coherence. We introduce the Joint Autoencoder Modulator (JAM) framework that jointly trains modality-specific autoencoders on the latent representations of pre-trained single modality models, encouraging alignment through both reconstruction and cross-modal objectives. By analogy, this framework serves as a method to escape Plato's Cave, enabling the emergence of shared structure from disjoint inputs. We evaluate this framework across three critical design axes: (i) the alignment objective - comparing contrastive loss (Con), its hard-negative variant (NegCon), and our Spread loss, (ii) the layer depth at which alignment is most effective, and (iii) the impact of foundation model scale on representational convergence. Our findings show that our lightweight Pareto-efficient framework reliably induces alignment, even across frozen, independently trained representations, offering both theoretical insight and practical pathways for transforming generalist unimodal foundations into specialist multimodal models.
Via

Jul 01, 2025
Abstract:There is growing interest in explainable recommender systems that provide recommendations along with explanations for the reasoning behind them. When evaluating recommender systems, most studies focus on overall recommendation performance. Only a few assess the quality of the explanations. Explanation quality is often evaluated through user studies that subjectively gather users' opinions on representative explanatory factors that shape end-users' perspective towards the results, not about the explanation contents itself. We aim to fill this gap by developing an objective metric to evaluate Veracity: the information quality of explanations. Specifically, we decompose Veracity into two dimensions: Fidelity and Attunement. Fidelity refers to whether the explanation includes accurate information about the recommended item. Attunement evaluates whether the explanation reflects the target user's preferences. By applying signal detection theory, we first determine decision outcomes for each dimension and then combine them to calculate a sensitivity, which serves as the final Veracity value. To assess the effectiveness of the proposed metric, we set up four cases with varying levels of information quality to validate whether our metric can accurately capture differences in quality. The results provided meaningful insights into the effectiveness of our proposed metric.
* Accepted to IEEE CAI 2025
Via

Jun 26, 2025
Abstract:Deep neural networks have set the state-of-the-art in computer vision tasks such as bounding box detection and semantic segmentation. Object detectors and segmentation models assign confidence scores to predictions, reflecting the model's uncertainty in object detection or pixel-wise classification. However, these confidence estimates are often miscalibrated, as their architectures and loss functions are tailored to task performance rather than probabilistic foundation. Even with well calibrated predictions, object detectors fail to quantify uncertainty outside detected bounding boxes, i.e., the model does not make a probability assessment of whether an area without detected objects is truly free of obstacles. This poses a safety risk in applications such as automated driving, where uncertainty in empty areas remains unexplored. In this work, we propose an object detection model grounded in spatial statistics. Bounding box data matches realizations of a marked point process, commonly used to describe the probabilistic occurrence of spatial point events identified as bounding box centers, where marks are used to describe the spatial extension of bounding boxes and classes. Our statistical framework enables a likelihood-based training and provides well-defined confidence estimates for whether a region is drivable, i.e., free of objects. We demonstrate the effectiveness of our method through calibration assessments and evaluation of performance.
* 15 pages, 4 figures, 3 tables
Via

Jun 26, 2025
Abstract:Effective deep feature extraction via feature-level fusion is crucial for multimodal object detection. However, previous studies often involve complex training processes that integrate modality-specific features by stacking multiple feature-level fusion units, leading to significant computational overhead. To address this issue, we propose a new fusion detection baseline that uses a single feature-level fusion unit to enable high-performance detection, thereby simplifying the training process. Based on this approach, we propose a lightweight attention-guided self-modulation feature fusion network (LASFNet), which introduces a novel attention-guided self-modulation feature fusion (ASFF) module that adaptively adjusts the responses of fusion features at both global and local levels based on attention information from different modalities, thereby promoting comprehensive and enriched feature generation. Additionally, a lightweight feature attention transformation module (FATM) is designed at the neck of LASFNet to enhance the focus on fused features and minimize information loss. Extensive experiments on three representative datasets demonstrate that, compared to state-of-the-art methods, our approach achieves a favorable efficiency-accuracy trade-off, reducing the number of parameters and computational cost by as much as 90% and 85%, respectively, while improving detection accuracy (mAP) by 1%-3%. The code will be open-sourced at https://github.com/leileilei2000/LASFNet.
Via

Jun 25, 2025
Abstract:Modern image-based object detection models, such as YOLOv7, primarily process individual frames independently, thus ignoring valuable temporal context naturally present in videos. Meanwhile, existing video-based detection methods often introduce complex temporal modules, significantly increasing model size and computational complexity. In practical applications such as surveillance and autonomous driving, transient challenges including motion blur, occlusions, and abrupt appearance changes can severely degrade single-frame detection performance. To address these issues, we propose a straightforward yet highly effective strategy: stacking multiple consecutive frames as input to a YOLO-based detector while supervising only the output corresponding to a single target frame. This approach leverages temporal information with minimal modifications to existing architectures, preserving simplicity, computational efficiency, and real-time inference capability. Extensive experiments on the challenging MOT20Det and our BOAT360 datasets demonstrate that our method improves detection robustness, especially for lightweight models, effectively narrowing the gap between compact and heavy detection networks. Additionally, we contribute the BOAT360 benchmark dataset, comprising annotated fisheye video sequences captured from a boat, to support future research in multi-frame video object detection in challenging real-world scenarios.
* Submitted to ECMR 2025
Via

Jul 01, 2025
Abstract:The T and Y spectral classes represent the coolest and lowest-mass population of brown dwarfs, yet their census remains incomplete due to limited statistics. Existing detection frameworks are often constrained to identifying M, L, and early T dwarfs, owing to the sparse observational sample of ultracool dwarfs (UCDs) at later types. This paper presents a novel machine learning framework capable of detecting and classifying late-T and Y dwarfs, trained entirely on synthetic photometry from atmospheric models. Utilizing grids from the ATMO 2020 and Sonora Bobcat models, I produce a training dataset over two orders of magnitude larger than any empirical set of >T6 UCDs. Polynomial color relations fitted to the model photometry are used to assign spectral types to these synthetic models, which in turn train an ensemble of classifiers to identify and classify the spectral type of late UCDs. The model is highly performant when validating on both synthetic and empirical datasets, verifying catalogs of known UCDs with object classification metrics >99% and an average spectral type precision within 0.35 +/- 0.37 subtypes. Application of the model to a 1.5 degree region around Pisces and the UKIDSS UDS field results in the discovery of one previously uncatalogued T8.2 candidate, demonstrating the ability of this model-trained approach in discovering faint, late-type UCDs from photometric catalogs.
* 12 pages, 9 figures, to be published in Monthly Notices of the Royal
Astronomical Society
Via

Jun 26, 2025
Abstract:Autonomous systems rely on sensors to estimate the environment around them. However, cameras, LiDARs, and RADARs have their own limitations. In nighttime or degraded environments such as fog, mist, or dust, thermal cameras can provide valuable information regarding the presence of objects of interest due to their heat signature. They make it easy to identify humans and vehicles that are usually at higher temperatures compared to their surroundings. In this paper, we focus on the adaptation of thermal cameras for robotics and automation, where the biggest hurdle is the lack of data. Several multi-modal datasets are available for driving robotics research in tasks such as scene segmentation, object detection, and depth estimation, which are the cornerstone of autonomous systems. However, they are found to be lacking in thermal imagery. Our paper proposes a solution to augment these datasets with synthetic thermal data to enable widespread and rapid adaptation of thermal cameras. We explore the use of conditional diffusion models to convert existing RGB images to thermal images using self-attention to learn the thermal properties of real-world objects.
* Accepted at Thermal Infrared in Robotics (TIRO) Workshop, ICRA 2025
Via

Jun 26, 2025
Abstract:Underground mining operations face significant safety challenges that make emergency response capabilities crucial. While robots have shown promise in assisting with search and rescue operations, their effectiveness depends on reliable miner detection capabilities. Deep learning algorithms offer potential solutions for automated miner detection, but require comprehensive training datasets, which are currently lacking for underground mining environments. This paper presents a novel thermal imaging dataset specifically designed to enable the development and validation of miner detection systems for potential emergency applications. We systematically captured thermal imagery of various mining activities and scenarios to create a robust foundation for detection algorithms. To establish baseline performance metrics, we evaluated several state-of-the-art object detection algorithms including YOLOv8, YOLOv10, YOLO11, and RT-DETR on our dataset. While not exhaustive of all possible emergency situations, this dataset serves as a crucial first step toward developing reliable thermal-based miner detection systems that could eventually be deployed in real emergency scenarios. This work demonstrates the feasibility of using thermal imaging for miner detection and establishes a foundation for future research in this critical safety application.
Via

Jun 26, 2025
Abstract:We focus on the source-free domain adaptive object detection (SF-DAOD) problem when source data is unavailable during adaptation and the model must adapt to an unlabeled target domain. The majority of approaches for the problem employ a self-supervised approach using a student-teacher (ST) framework where pseudo-labels are generated via a source-pretrained model for further fine-tuning. We observe that the performance of a student model often degrades drastically, due to the collapse of the teacher model, primarily caused by high noise in pseudo-labels, resulting from domain bias, discrepancies, and a significant domain shift across domains. To obtain reliable pseudo-labels, we propose a Target-based Iterative Query-Token Adversarial Network (TITAN), which separates the target images into two subsets: those similar to the source (easy) and those dissimilar (hard). We propose a strategy to estimate variance to partition the target domain. This approach leverages the insight that higher detection variances correspond to higher recall and greater similarity to the source domain. Also, we incorporate query-token-based adversarial modules into a student-teacher baseline framework to reduce the domain gaps between two feature representations. Experiments conducted on four natural imaging datasets and two challenging medical datasets have substantiated the superior performance of TITAN compared to existing state-of-the-art (SOTA) methodologies. We report an mAP improvement of +22.7, +22.2, +21.1, and +3.7 percent over the current SOTA on C2F, C2B, S2C, and K2C benchmarks, respectively.
* ICCV 2025
Via

Jun 24, 2025
Abstract:Multi-sensor fusion perception (MSFP) is a key technology for embodied AI, which can serve a variety of downstream tasks (e.g., 3D object detection and semantic segmentation) and application scenarios (e.g., autonomous driving and swarm robotics). Recently, impressive achievements on AI-based MSFP methods have been reviewed in relevant surveys. However, we observe that the existing surveys have some limitations after a rigorous and detailed investigation. For one thing, most surveys are oriented to a single task or research field, such as 3D object detection or autonomous driving. Therefore, researchers in other related tasks often find it difficult to benefit directly. For another, most surveys only introduce MSFP from a single perspective of multi-modal fusion, while lacking consideration of the diversity of MSFP methods, such as multi-view fusion and time-series fusion. To this end, in this paper, we hope to organize MSFP research from a task-agnostic perspective, where methods are reported from various technical views. Specifically, we first introduce the background of MSFP. Next, we review multi-modal and multi-agent fusion methods. A step further, time-series fusion methods are analyzed. In the era of LLM, we also investigate multimodal LLM fusion methods. Finally, we discuss open challenges and future directions for MSFP. We hope this survey can help researchers understand the important progress in MSFP and provide possible insights for future research.
Via
