This paper summarizes the results of evaluating a compositional approach for Focus Analysis (FA) in Linguistics and Sentiment Analysis (SA) in Natural Language Processing (NLP). While quantitative evaluations of compositional and non-compositional approaches in SA exist in NLP, similar quantitative evaluations are very rare in FA in Linguistics that deal with linguistic expressions representing focus or emphasis such as "it was John who left". We fill this gap in research by arguing that compositional rules in SA also apply to FA because FA and SA are closely related meaning that SA is part of FA. Our compositional approach in SA exploits basic syntactic rules such as rules of modification, coordination, and negation represented in the formalism of Universal Dependencies (UDs) in English and applied to words representing sentiments from sentiment dictionaries. Some of the advantages of our compositional analysis method for SA in contrast to non-compositional analysis methods are interpretability and explainability. We test the accuracy of our compositional approach and compare it with a non-compositional approach VADER that uses simple heuristic rules to deal with negation, coordination and modification. In contrast to previous related work that evaluates compositionality in SA on long reviews, this study uses more appropriate datasets to evaluate compositionality. In addition, we generalize the results of compositional approaches in SA to compositional approaches in FA.
Critical retained foreign objects (RFOs), including surgical instruments like sponges and needles, pose serious patient safety risks and carry significant financial and legal implications for healthcare institutions. Detecting critical RFOs using artificial intelligence remains challenging due to their rarity and the limited availability of chest X-ray datasets that specifically feature critical RFOs cases. Existing datasets only contain non-critical RFOs, like necklace or zipper, further limiting their utility for developing clinically impactful detection algorithms. To address these limitations, we introduce "Hopkins RFOs Bench", the first and largest dataset of its kind, containing 144 chest X-ray images of critical RFO cases collected over 18 years from the Johns Hopkins Health System. Using this dataset, we benchmark several state-of-the-art object detection models, highlighting the need for enhanced detection methodologies for critical RFO cases. Recognizing data scarcity challenges, we further explore image synthetic methods to bridge this gap. We evaluate two advanced synthetic image methods, DeepDRR-RFO, a physics-based method, and RoentGen-RFO, a diffusion-based method, for creating realistic radiographs featuring critical RFOs. Our comprehensive analysis identifies the strengths and limitations of each synthetic method, providing insights into effectively utilizing synthetic data to enhance model training. The Hopkins RFOs Bench and our findings significantly advance the development of reliable, generalizable AI-driven solutions for detecting critical RFOs in clinical chest X-rays.
General-purpose clinical natural language processing (NLP) tools are increasingly used for the automatic labeling of clinical reports. However, independent evaluations for specific tasks, such as pediatric chest radiograph (CXR) report labeling, are limited. This study compares four commercial clinical NLP systems - Amazon Comprehend Medical (AWS), Google Healthcare NLP (GC), Azure Clinical NLP (AZ), and SparkNLP (SP) - for entity extraction and assertion detection in pediatric CXR reports. Additionally, CheXpert and CheXbert, two dedicated chest radiograph report labelers, were evaluated on the same task using CheXpert-defined labels. We analyzed 95,008 pediatric CXR reports from a large academic pediatric hospital. Entities and assertion statuses (positive, negative, uncertain) from the findings and impression sections were extracted by the NLP systems, with impression section entities mapped to 12 disease categories and a No Findings category. CheXpert and CheXbert extracted the same 13 categories. Outputs were compared using Fleiss Kappa and accuracy against a consensus pseudo-ground truth. Significant differences were found in the number of extracted entities and assertion distributions across NLP systems. SP extracted 49,688 unique entities, GC 16,477, AZ 31,543, and AWS 27,216. Assertion accuracy across models averaged around 62%, with SP highest (76%) and AWS lowest (50%). CheXpert and CheXbert achieved 56% accuracy. Considerable variability in performance highlights the need for careful validation and review before deploying NLP tools for clinical report labeling.
We study proportional representation in the framework of temporal voting with approval ballots. Prior work adapted basic proportional representation concepts -- justified representation (JR), proportional JR (PJR), and extended JR (EJR) -- from the multiwinner setting to the temporal setting. Our work introduces and examines ways of going beyond EJR. Specifically, we consider stronger variants of JR, PJR, and EJR, and introduce temporal adaptations of more demanding multiwinner axioms, such as EJR+, full JR (FJR), full proportional JR (FPJR), and the Core. For each of these concepts, we investigate its existence and study its relationship to existing notions, thereby establishing a rich hierarchy of proportionality concepts. Notably, we show that two of our proposed axioms -- EJR+ and FJR -- strengthen EJR while remaining satisfiable in every temporal election.
Reducing the memory footprint of Machine Learning (ML) models, especially Deep Neural Networks (DNNs), is imperative to facilitate their deployment on resource-constrained edge devices. However, a notable drawback of DNN models lies in their susceptibility to adversarial attacks, wherein minor input perturbations can deceive them. A primary challenge revolves around the development of accurate, resilient, and compact DNN models suitable for deployment on resource-constrained edge devices. This paper presents the outcomes of a compact DNN model that exhibits resilience against both black-box and white-box adversarial attacks. This work has achieved this resilience through training with the QKeras quantization-aware training framework. The study explores the potential of QKeras and an adversarial robustness technique, Jacobian Regularization (JR), to co-optimize the DNN architecture through per-layer JR methodology. As a result, this paper has devised a DNN model employing this co-optimization strategy based on Stochastic Ternary Quantization (STQ). Its performance was compared against existing DNN models in the face of various white-box and black-box attacks. The experimental findings revealed that, the proposed DNN model had small footprint and on average, it exhibited better performance than Quanos and DS-CNN MLCommons/TinyML (MLC/T) benchmarks when challenged with white-box and black-box attacks, respectively, on the CIFAR-10 image and Google Speech Commands audio datasets.
We introduces a general linear framework that unifies the study of multi-winner voting rules and proportionality axioms, demonstrating that many prominent multi-winner voting rules-including Thiele methods, their sequential variants, and approval-based committee scoring rules-are linear. Similarly, key proportionality axioms such as Justified Representation (JR), Extended JR (EJR), and their strengthened variants (PJR+, EJR+), along with core stability, can fit within this linear structure as well. Leveraging PAC learning theory, we establish general and novel upper bounds on the sample complexity of learning linear mappings. Our approach yields near-optimal guarantees for diverse classes of rules, including Thiele methods and ordered weighted average rules, and can be applied to analyze the sample complexity of learning proportionality axioms such as approximate core stability. Furthermore, the linear structure allows us to leverage prior work to extend our analysis beyond worst-case scenarios to study the likelihood of various properties of linear rules and axioms. We introduce a broad class of distributions that extend Impartial Culture for approval preferences, and show that under these distributions, with high probability, any Thiele method is resolute, CORE is non-empty, and any Thiele method satisfies CORE, among other observations on the likelihood of commonly-studied properties in social choice. We believe that this linear theory offers a new perspective and powerful new tools for designing and analyzing multi-winner rules in modern social choice applications.
This study examines how temperature settings and model architectures affect the generation of structured fictional data (names, birthdates) across three large language models (LLMs): llama3.1:8b, deepseek-r1:8b, and mistral:latest. By systematically testing temperature values from 0.0 to 1.0 in increments of 0.1, we conducted 330 trials yielding 889 structured entities, validated for syntactic consistency. Key findings reveal that model architecture significantly influences computational efficiency, with mistral:latest and llama3.1:8b processing data 8x faster than deepseek-r1:8b. Contrary to expectations, temperature showed no correlation with processing time, challenging assumptions about stochastic sampling costs. Output diversity remained limited, as models consistently defaulted to common name archetypes (e.g., 'John Doe' and 'Jane Smith') across all temperatures, though rare names clustered at intermediate values (0.3-0.7). These results demonstrate that architectural optimizations, rather than temperature adjustments, dominate performance in structured generation tasks. The findings emphasize prioritizing model selection over hyperparameter tuning for efficiency and suggest explicit diversity constraints are necessary to mitigate default output biases in synthetic data pipelines.
In multiwinner approval voting, forming a committee that proportionally represents voters' approval ballots is an essential task. The notion of justified representation (JR) demands that any large "cohesive" group of voters should be proportionally "represented". The "cohesiveness" is defined in different ways; two common ways are the following: (C1) demands that the group unanimously approves a set of candidates proportional to its size, while (C2) requires each member to approve at least a fixed fraction of such a set. Similarly, "representation" have been considered in different ways: (R1) the coalition's collective utility from the winning set exceeds that of any proportionally sized alternative, and (R2) for any proportionally sized alternative, at least one member of the coalition derives less utility from it than from the winning set. Three of the four possible combinations have been extensively studied: (C1)-(R1) defines Proportional Justified Representation (PJR), (C1)-(R2) defines Extended Justified Representation (EJR), (C2)-(R2) defines Full Justified Representation (FJR). All three have merits, but also drawbacks. PJR is the weakest notion, and perhaps not sufficiently demanding; EJR may not be compatible with perfect representation; and it is open whether a committee satisfying FJR can be found efficiently. We study the combination (C2)-(R1), which we call Full Proportional Justified Representation (FPJR). We investigate FPJR's properties and find that it shares PJR's advantages over EJR: several proportionality axioms (e.g. priceability, perfect representation) imply FPJR and PJR but not EJR. We also find that efficient rules like the greedy Monroe rule and the method of equal shares satisfy FPJR, matching a key advantage of EJR over FJR. However, the Proportional Approval Voting (PAV) rule may violate FPJR, so neither of EJR and FPJR implies the other.
We give a faster algorithm for computing an approximate John ellipsoid around $n$ points in $d$ dimensions. The best known prior algorithms are based on repeatedly computing the leverage scores of the points and reweighting them by these scores [CCLY19]. We show that this algorithm can be substantially sped up by delaying the computation of high accuracy leverage scores by using sampling, and then later computing multiple batches of high accuracy leverage scores via fast rectangular matrix multiplication. We also give low-space streaming algorithms for John ellipsoids using similar ideas.
The 2024 Nobel Prize in Physics was awarded to John Hopfield and Geoffrey Hinton, "for foundational discoveries and inventions that enable machine learning with artificial neural networks." As noted by the Nobel committee, their work moved the boundaries of physics. This is a brief reflection on Hopfield's work, its implications for the emergence of biological physics as a part of physics, the path from his early papers to the modern revolution in artificial intelligence, and prospects for the future.