Abstract:This study examines how temperature settings and model architectures affect the generation of structured fictional data (names, birthdates) across three large language models (LLMs): llama3.1:8b, deepseek-r1:8b, and mistral:latest. By systematically testing temperature values from 0.0 to 1.0 in increments of 0.1, we conducted 330 trials yielding 889 structured entities, validated for syntactic consistency. Key findings reveal that model architecture significantly influences computational efficiency, with mistral:latest and llama3.1:8b processing data 8x faster than deepseek-r1:8b. Contrary to expectations, temperature showed no correlation with processing time, challenging assumptions about stochastic sampling costs. Output diversity remained limited, as models consistently defaulted to common name archetypes (e.g., 'John Doe' and 'Jane Smith') across all temperatures, though rare names clustered at intermediate values (0.3-0.7). These results demonstrate that architectural optimizations, rather than temperature adjustments, dominate performance in structured generation tasks. The findings emphasize prioritizing model selection over hyperparameter tuning for efficiency and suggest explicit diversity constraints are necessary to mitigate default output biases in synthetic data pipelines.
Abstract:This study investigates the performance of the DeepSeek R1 language model on 30 challenging mathematical problems derived from the MATH dataset, problems that previously proved unsolvable by other models under time constraints. Unlike prior work, this research removes time limitations to explore whether DeepSeek R1's architecture, known for its reliance on token-based reasoning, can achieve accurate solutions through a multi-step process. The study compares DeepSeek R1 with four other models (gemini-1.5-flash-8b, gpt-4o-mini-2024-07-18, llama3.1:8b, and mistral-8b-latest) across 11 temperature settings. Results demonstrate that DeepSeek R1 achieves superior accuracy on these complex problems but generates significantly more tokens than other models, confirming its token-intensive approach. The findings highlight a trade-off between accuracy and efficiency in mathematical problem-solving with large language models: while DeepSeek R1 excels in accuracy, its reliance on extensive token generation may not be optimal for applications requiring rapid responses. The study underscores the importance of considering task-specific requirements when selecting an LLM and emphasizes the role of temperature settings in optimizing performance.
Abstract:Large language models (LLMs) excel in many natural language tasks, yet they struggle with complex mathemat-ical problem-solving, particularly in symbolic reasoning and maintaining consistent output. This study evalu-ates 10 LLMs with 7 to 8 billion parameters using 945 competition-level problems from the MATH dataset. The focus is on their ability to generate executable Python code as a step in their reasoning process, involving over 9,450 code executions. The research introduces an evaluation framework using mistral-large-2411 to rate answers on a 5-point scale, which helps address inconsistencies in mathematical notation. It also examines the impact of regenerating output token-by-token on refining results. The findings reveal a significant 34.5% per-formance gap between the top commercial model (gpt-4o-mini, scoring 83.7%) and the least effective open-source model (open-codestral-mamba:v0.1, scoring 49.2%). This disparity is especially noticeable in complex areas like Number Theory. While token-by-token regeneration slightly improved accuracy (+0.8%) for the model llama3.1:8b, it also reduced code execution time by 36.7%, highlighting a trade-off between efficiency and precision. The study also noted a consistent trend where harder problems correlated with lower accuracy across all models. Despite using controlled execution environments, less than 1% of the generated code was unsafe, and 3.17% of problems remained unsolved after 10 attempts, suggesting that hybrid reasoning methods may be beneficial.
Abstract:This article introduces a benchmark designed to evaluate the capabilities of multimodal models in analyzing and interpreting images. The benchmark focuses on seven key visual aspects: main object, additional objects, background, detail, dominant colors, style, and viewpoint. A dataset of 14,580 images, generated from diverse text prompts, was used to assess the performance of seven leading multimodal models. These models were evaluated on their ability to accurately identify and describe each visual aspect, providing insights into their strengths and weaknesses for comprehensive image understanding. The findings of this benchmark have significant implications for the development and selection of multimodal models for various image analysis tasks.