Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Jun 24, 2025
Abstract:Recent advances in deep learning for vision tasks have seen the rise of State Space Models (SSMs) like Mamba, celebrated for their linear scalability. However, their adaptation to 2D visual data often necessitates complex modifications that may diminish efficiency. In this paper, we introduce MambaOutRS, a novel hybrid convolutional architecture for remote sensing image classification that re-evaluates the necessity of recurrent SSMs. MambaOutRS builds upon stacked Gated CNN blocks for local feature extraction and introduces a novel Fourier Filter Gate (FFG) module that operates in the frequency domain to capture global contextual information efficiently. Our architecture employs a four-stage hierarchical design and was extensively evaluated on challenging remote sensing datasets: UC Merced, AID, NWPU-RESISC45, and EuroSAT. MambaOutRS consistently achieved state-of-the-art (SOTA) performance across these benchmarks. Notably, our MambaOutRS-t variant (24.0M parameters) attained the highest F1-scores of 98.41\% on UC Merced and 95.99\% on AID, significantly outperforming existing baselines, including larger transformer models and Mamba-based architectures, despite using considerably fewer parameters. An ablation study conclusively demonstrates the critical role of the Fourier Filter Gate in enhancing the model's ability to capture global spatial patterns, leading to robust and accurate classification. These results strongly suggest that the complexities of recurrent SSMs can be effectively superseded by a judicious combination of gated convolutions for spatial mixing and frequency-based gates for spectral global context. Thus, MambaOutRS provides a compelling and efficient paradigm for developing high-performance deep learning models in remote sensing and other vision domains, particularly where computational efficiency is paramount.
Via

Jun 17, 2025
Abstract:Many recent approaches to structured NLP tasks use an autoregressive language model $M$ to map unstructured input text $x$ to output text $y$ representing structured objects (such as tuples, lists, trees, code, etc.), where the desired output structure is enforced via constrained decoding. During training, these approaches do not require the model to be aware of the constraints, which are merely implicit in the training outputs $y$. This is advantageous as it allows for dynamic constraints without requiring retraining, but can lead to low-quality output during constrained decoding at test time. We overcome this problem with Boosted Constrained Decoding (BoostCD), which combines constrained and unconstrained decoding in two phases: Phase 1 decodes from the base model $M$ twice, in constrained and unconstrained mode, obtaining two weak predictions. In phase 2, a learned autoregressive boosted model combines the two weak predictions into one final prediction. The mistakes made by the base model with vs. without constraints tend to be complementary, which the boosted model learns to exploit for improved performance. We demonstrate the power of BoostCD by applying it to closed information extraction. Our model, BoostIE, outperforms prior approaches both in and out of distribution, addressing several common errors identified in those approaches.
Via

Jun 24, 2025
Abstract:Generating reports for computed tomography (CT) images is a challenging task, while similar to existing studies for medical image report generation, yet has its unique characteristics, such as spatial encoding of multiple images, alignment between image volume and texts, etc. Existing solutions typically use general 2D or 3D image processing techniques to extract features from a CT volume, where they firstly compress the volume and then divide the compressed CT slices into patches for visual encoding. These approaches do not explicitly account for the transformations among CT slices, nor do they effectively integrate multi-level image features, particularly those containing specific organ lesions, to instruct CT report generation (CTRG). In considering the strong correlation among consecutive slices in CT scans, in this paper, we propose a large language model (LLM) based CTRG method with recurrent visual feature extraction and stereo attentions for hierarchical feature modeling. Specifically, we use a vision Transformer to recurrently process each slice in a CT volume, and employ a set of attentions over the encoded slices from different perspectives to selectively obtain important visual information and align them with textual features, so as to better instruct an LLM for CTRG. Experiment results and further analysis on the benchmark M3D-Cap dataset show that our method outperforms strong baseline models and achieves state-of-the-art results, demonstrating its validity and effectiveness.
* 7 pages, 3 figures
Via

Jun 24, 2025
Abstract:Accessibility remains a critical concern in today's society, as many technologies are not developed to support the full range of user needs. Existing multi-agent systems (MAS) often cannot provide comprehensive assistance for users in need due to the lack of customization stemming from closed-source designs. Consequently, individuals with disabilities frequently encounter significant barriers when attempting to interact with digital environments. We introduce MATE, a multimodal accessibility MAS, which performs the modality conversions based on the user's needs. The system is useful for assisting people with disabilities by ensuring that data will be converted to an understandable format. For instance, if the user cannot see well and receives an image, the system converts this image to its audio description. MATE can be applied to a wide range of domains, industries, and areas, such as healthcare, and can become a useful assistant for various groups of users. The system supports multiple types of models, ranging from LLM API calling to using custom machine learning (ML) classifiers. This flexibility ensures that the system can be adapted to various needs and is compatible with a wide variety of hardware. Since the system is expected to run locally, it ensures the privacy and security of sensitive information. In addition, the framework can be effectively integrated with institutional technologies (e.g., digital healthcare service) for real-time user assistance. Furthermore, we introduce ModCon-Task-Identifier, a model that is capable of extracting the precise modality conversion task from the user input. Numerous experiments show that ModCon-Task-Identifier consistently outperforms other LLMs and statistical models on our custom data. Our code and data are publicly available at https://github.com/AlgazinovAleksandr/Multi-Agent-MATE.
Via

Jun 16, 2025
Abstract:Rules could be an information extraction (IE) default option, compared to ML and LLMs in terms of sustainability, transferability, interpretability, and development burden. We suggest a sustainable and combined use of rules and ML as an IE method. Our approach starts with an exhaustive expert manual highlighting in a single working session of a representative subset of the data corpus. We developed and validated the feasibility and the performance metrics of the REST decision tool to help the annotator choose between rules as a by default option and ML for each entity of an IE task. REST makes the annotator visualize the characteristics of each entity formalization in the free texts and the expected rule development feasibility and IE performance metrics. ML is considered as a backup IE option and manual annotation for training is therefore minimized. The external validity of REST on a 12-entity use case showed good reproducibility.
Via

Jun 24, 2025
Abstract:The Extreme Operating Conditions Search (EOCS) problem is one of the key problems in relay setting calculation, which is used to ensure that the setting values of protection relays can adapt to the changing operating conditions of power systems over a period of time after deployment. The high penetration of renewable energy and the wide application of inverter-based resources make the operating conditions of renewable power systems more volatile, which urges the adoption of the online relay setting calculation strategy. However, the computation speed of existing EOCS methods based on local enumeration, heuristic algorithms, and mathematical programming cannot meet the efficiency requirement of online relay setting calculation. To reduce the time overhead, this paper, for the first time, proposes an efficient deep learning-based EOCS method suitable for online relay setting calculation. First, the power system information is formulated as four layers, i.e., a component parameter layer, a topological connection layer, an electrical distance layer, and a graph distance layer, which are fed into a parallel graph neural network (PGNN) model for feature extraction. Then, the four feature layers corresponding to each node are spliced and stretched, and then fed into the decision network to predict the extreme operating condition of the system. Finally, the proposed PGNN method is validated on the modified IEEE 39-bus and 118-bus test systems, where some of the synchronous generators are replaced by renewable generation units. The nonlinear fault characteristics of renewables are fully considered when computing fault currents. The experiment results show that the proposed PGNN method achieves higher accuracy than the existing methods in solving the EOCS problem. Meanwhile, it also provides greater improvements in online computation time.
Via

Jun 24, 2025
Abstract:Meta-reinforcement learning requires utilizing prior task distribution information obtained during exploration to rapidly adapt to unknown tasks. The efficiency of an agent's exploration hinges on accurately identifying the current task. Recent Bayes-Adaptive Deep RL approaches often rely on reconstructing the environment's reward signal, which is challenging in sparse reward settings, leading to suboptimal exploitation. Inspired by bisimulation metrics, which robustly extracts behavioral similarity in continuous MDPs, we propose SimBelief-a novel meta-RL framework via measuring similarity of task belief in Bayes-Adaptive MDP (BAMDP). SimBelief effectively extracts common features of similar task distributions, enabling efficient task identification and exploration in sparse reward environments. We introduce latent task belief metric to learn the common structure of similar tasks and incorporate it into the specific task belief. By learning the latent dynamics across task distributions, we connect shared latent task belief features with specific task features, facilitating rapid task identification and adaptation. Our method outperforms state-of-the-art baselines on sparse reward MuJoCo and panda-gym tasks.
Via

Jun 25, 2025
Abstract:In this work, we propose a division-and-summarization (DaS) framework for dense video captioning. After partitioning each untrimmed long video as multiple event proposals, where each event proposal consists of a set of short video segments, we extract visual feature (e.g., C3D feature) from each segment and use the existing image/video captioning approach to generate one sentence description for this segment. Considering that the generated sentences contain rich semantic descriptions about the whole event proposal, we formulate the dense video captioning task as a visual cue aided sentence summarization problem and propose a new two stage Long Short Term Memory (LSTM) approach equipped with a new hierarchical attention mechanism to summarize all generated sentences as one descriptive sentence with the aid of visual features. Specifically, the first-stage LSTM network takes all semantic words from the generated sentences and the visual features from all segments within one event proposal as the input, and acts as the encoder to effectively summarize both semantic and visual information related to this event proposal. The second-stage LSTM network takes the output from the first-stage LSTM network and the visual features from all video segments within one event proposal as the input, and acts as the decoder to generate one descriptive sentence for this event proposal. Our comprehensive experiments on the ActivityNet Captions dataset demonstrate the effectiveness of our newly proposed DaS framework for dense video captioning.
* 10 pages
Via

Jun 24, 2025
Abstract:For more than a decade now, academicians and online platform administrators have been studying solutions to the problem of bot detection. Bots are computer algorithms whose use is far from being benign: malicious bots are purposely created to distribute spam, sponsor public characters and, ultimately, induce a bias within the public opinion. To fight the bot invasion on our online ecosystem, several approaches have been implemented, mostly based on (supervised and unsupervised) classifiers, which adopt the most varied account features, from the simplest to the most expensive ones to be extracted from the raw data obtainable through the Twitter public APIs. In this exploratory study, using Twitter as a benchmark, we compare the performances of four state-of-art feature sets in detecting novel bots: one of the output scores of the popular bot detector Botometer, which considers more than 1,000 features of an account to take a decision; two feature sets based on the account profile and timeline; and the information about the Twitter client from which the user tweets. The results of our analysis, conducted on six recently released datasets of Twitter accounts, hint at the possible use of general-purpose classifiers and cheap-to-compute account features for the detection of evolved bots.
* Information Processing & Management, Volume 58, Issue 6, November
2021, 102685
* pre-print version
Via

Jun 24, 2025
Abstract:This paper provides preliminary results on exploring the task of performing turn-level data augmentation for dialogue system based on different types of commonsense relationships, and the automatic evaluation of the generated synthetic turns. The proposed methodology takes advantage of the extended knowledge and zero-shot capabilities of pretrained Large Language Models (LLMs) to follow instructions, understand contextual information, and their commonsense reasoning capabilities. The approach draws inspiration from methodologies like Chain-of-Thought (CoT), applied more explicitly to the task of prompt-based generation for dialogue-based data augmentation conditioned on commonsense attributes, and the automatic evaluation of the generated dialogues. To assess the effectiveness of the proposed approach, first we extracted 200 randomly selected partial dialogues, from 5 different well-known dialogue datasets, and generate alternative responses conditioned on different event commonsense attributes. This novel dataset allows us to measure the proficiency of LLMs in generating contextually relevant commonsense knowledge, particularly up to 12 different specific ATOMIC [10] database relations. Secondly, we propose an evaluation framework to automatically detect the quality of the generated dataset inspired by the ACCENT [26] metric, which offers a nuanced approach to assess event commonsense. However, our method does not follow ACCENT's complex eventrelation tuple extraction process. Instead, we propose an instruction-based prompt for each commonsense attribute and use state-of-the-art LLMs to automatically detect the original attributes used when creating each augmented turn in the previous step. Preliminary results suggest that our approach effectively harnesses LLMs capabilities for commonsense reasoning and evaluation in dialogue systems.
Via
