Large-language models (LLMs) have been shown to respond in a variety of ways for classification tasks outside of question-answering. LLM responses are sometimes called "hallucinations" since the output is not what is ex pected. Memorization strategies in LLMs are being studied in detail, with the goal of understanding how LLMs respond. We perform a deep dive into a classification task based on United States Supreme Court (SCOTUS) decisions. The SCOTUS corpus is an ideal classification task to study for LLM memory accuracy because it presents significant challenges due to extensive sentence length, complex legal terminology, non-standard structure, and domain-specific vocabulary. Experimentation is performed with the latest LLM fine tuning and retrieval-based approaches, such as parameter-efficient fine-tuning, auto-modeling, and others, on two traditional category-based SCOTUS classification tasks: one with 15 labeled topics and another with 279. We show that prompt-based models with memories, such as DeepSeek, can be more robust than previous BERT-based models on both tasks scoring about 2 points better than previous models not based on prompting.




When retrieval-augmented generation (RAG) systems hallucinate, what geometric trace does this leave in embedding space? We introduce the Semantic Grounding Index (SGI), defined as the ratio of angular distances from the response to the question versus the context on the unit hypersphere $\mathbb{S}^{d-1}$.Our central finding is \emph{semantic laziness}: hallucinated responses remain angularly proximate to questions rather than departing toward retrieved contexts. On HaluEval ($n$=5,000), we observe large effect sizes (Cohen's $d$ ranging from 0.92 to 1.28) across five embedding models with mean cross-model correlation $r$=0.85. Crucially, we derive from the spherical triangle inequality that SGI's discriminative power should increase with question-context angular separation $θ(q,c)$-a theoretical prediction confirmed empirically: effect size rises monotonically from $d$=0.61 -low $θ(q,c)$, to $d$=1.27 -high $θ(q,c)$, with AUC improving from 0.72 to 0.83. Subgroup analysis reveals that SGI excels on long responses ($d$=2.05) and short questions ($d$=1.22), while remaining robust across context lengths. Calibration analysis yields ECE=0.10, indicating SGI scores can serve as probability estimates, not merely rankings. A critical negative result on TruthfulQA (AUC=0.478) establishes that angular geometry measures topical engagement rather than factual accuracy. SGI provides computationally efficient, theoretically grounded infrastructure for identifying responses that warrant verification in production RAG deployments.
The landscape of scientific peer review is rapidly evolving with the integration of Large Language Models (LLMs). This shift is driven by two parallel trends: the widespread individual adoption of LLMs by reviewers to manage workload (the "Lazy Reviewer" hypothesis) and the formal institutional deployment of AI-powered assessment systems by conferences like AAAI and Stanford's Agents4Science. This study investigates the robustness of these "LLM-as-a-Judge" systems (both illicit and sanctioned) to adversarial PDF manipulation. Unlike general jailbreaks, we focus on a distinct incentive: flipping "Reject" decisions to "Accept," for which we develop a novel evaluation metric which we term as WAVS (Weighted Adversarial Vulnerability Score). We curated a dataset of 200 scientific papers and adapted 15 domain-specific attack strategies to this task, evaluating them across 13 Language Models, including GPT-5, Claude Haiku, and DeepSeek. Our results demonstrate that obfuscation strategies like "Maximum Mark Magyk" successfully manipulate scores, achieving alarming decision flip rates even in large-scale models. We will release our complete dataset and injection framework to facilitate more research on this topic.
The rapid acceleration of scientific publishing has created substantial challenges for researchers attempting to discover, contextualize, and interpret relevant literature. Traditional keyword-based search systems provide limited semantic understanding, while existing AI-driven tools typically focus on isolated tasks such as retrieval, clustering, or bibliometric visualization. This paper presents an integrated system for scientific literature exploration that combines large-scale data acquisition, hybrid retrieval, semantic topic modeling, and heterogeneous knowledge graph construction. The system builds a comprehensive corpus by merging full-text data from arXiv with structured metadata from OpenAlex. A hybrid retrieval architecture fuses BM25 lexical search with embedding-based semantic search using Reciprocal Rank Fusion. Topic modeling is performed on retrieved results using BERTopic or non-negative matrix factorization depending on computational resources. A knowledge graph unifies papers, authors, institutions, countries, and extracted topics into an interpretable structure. The system provides a multi-layered exploration environment that reveals not only relevant publications but also the conceptual and relational landscape surrounding a query. Evaluation across multiple queries demonstrates improvements in retrieval relevance, topic coherence, and interpretability. The proposed framework contributes an extensible foundation for AI-assisted scientific discovery.
This paper introduces the concept of value awareness in AI, which goes beyond the traditional value-alignment problem. Our definition of value awareness presents us with a concise and simplified roadmap for engineering value-aware AI. The roadmap is structured around three core pillars: (1) learning and representing human values using formal semantics, (2) ensuring the value alignment of both individual agents and multiagent systems, and (3) providing value-based explainability on behaviour. The paper presents a selection of our ongoing work on some of these topics, along with applications to real-life domains.




Extracting coherent and human-understandable themes from large collections of unstructured historical newspaper archives presents significant challenges due to topic evolution, Optical Character Recognition (OCR) noise, and the sheer volume of text. Traditional topic-modeling methods, such as Latent Dirichlet Allocation (LDA), often fall short in capturing the complexity and dynamic nature of discourse in historical texts. To address these limitations, we employ BERTopic. This neural topic-modeling approach leverages transformerbased embeddings to extract and classify topics, which, despite its growing popularity, still remains underused in historical research. Our study focuses on articles published between 1955 and 2018, specifically examining discourse on nuclear power and nuclear safety. We analyze various topic distributions across the corpus and trace their temporal evolution to uncover long-term trends and shifts in public discourse. This enables us to more accurately explore patterns in public discourse, including the co-occurrence of themes related to nuclear power and nuclear weapons and their shifts in topic importance over time. Our study demonstrates the scalability and contextual sensitivity of BERTopic as an alternative to traditional approaches, offering richer insights into historical discourses extracted from newspaper archives. These findings contribute to historical, nuclear, and social-science research while reflecting on current limitations and proposing potential directions for future work.
Social media serves as a critical medium in modern politics because it both reflects politicians' ideologies and facilitates communication with younger generations. We present MultiParTweet, a multilingual tweet corpus from X that connects politicians' social media discourse with German political corpus GerParCor, thereby enabling comparative analyses between online communication and parliamentary debates. MultiParTweet contains 39 546 tweets, including 19 056 media items. Furthermore, we enriched the annotation with nine text-based models and one vision-language model (VLM) to annotate MultiParTweet with emotion, sentiment, and topic annotations. Moreover, the automated annotations are evaluated against a manually annotated subset. MultiParTweet can be reconstructed using our tool, TTLABTweetCrawler, which provides a framework for collecting data from X. To demonstrate a methodological demonstration, we examine whether the models can predict each other using the outputs of the remaining models. In summary, we provide MultiParTweet, a resource integrating automatic text and media-based annotations validated with human annotations, and TTLABTweetCrawler, a general-purpose X data collection tool. Our analysis shows that the models are mutually predictable. In addition, VLM-based annotation were preferred by human annotators, suggesting that multimodal representations align more with human interpretation.
Integrating language models (LMs) in healthcare systems holds great promise for improving medical workflows and decision-making. However, a critical barrier to their real-world adoption is the lack of reliable evaluation of their trustworthiness, especially in multilingual healthcare settings. Existing LMs are predominantly trained in high-resource languages, making them ill-equipped to handle the complexity and diversity of healthcare queries in mid- and low-resource languages, posing significant challenges for deploying them in global healthcare contexts where linguistic diversity is key. In this work, we present CLINIC, a Comprehensive Multilingual Benchmark to evaluate the trustworthiness of language models in healthcare. CLINIC systematically benchmarks LMs across five key dimensions of trustworthiness: truthfulness, fairness, safety, robustness, and privacy, operationalized through 18 diverse tasks, spanning 15 languages (covering all the major continents), and encompassing a wide array of critical healthcare topics like disease conditions, preventive actions, diagnostic tests, treatments, surgeries, and medications. Our extensive evaluation reveals that LMs struggle with factual correctness, demonstrate bias across demographic and linguistic groups, and are susceptible to privacy breaches and adversarial attacks. By highlighting these shortcomings, CLINIC lays the foundation for enhancing the global reach and safety of LMs in healthcare across diverse languages.
We study how generative artificial intelligence (AI) transforms the work of financial analysts. Using the 2023 launch of FactSet's AI platform as a natural experiment, we find that adoption produces markedly richer and more comprehensive reports -- featuring 40% more distinct information sources, 34% broader topical coverage, and 25% greater use of advanced analytical methods -- while also improving timeliness. However, forecast errors rise by 59% as AI-assisted reports convey a more balanced mix of positive and negative information that is harder to synthesize, particularly for analysts facing heavier cognitive demands. Placebo tests using other data vendors confirm that these effects are unique to FactSet's AI integration. Overall, our findings reveal both the productivity gains and cognitive limits of generative AI in financial information production.
Datasets may contain observations with multiple labels. If the labels are not mutually exclusive, and if the labels vary greatly in frequency, obtaining a sample that includes sufficient observations with scarcer labels to make inferences about those labels, and which deviates from the population frequencies in a known manner, creates challenges. In this paper, we consider a multivariate Bernoulli distribution as our underlying distribution of a multi-label problem. We present a novel sampling algorithm that takes label dependencies into account. It uses observed label frequencies to estimate multivariate Bernoulli distribution parameters and calculate weights for each label combination. This approach ensures the weighted sampling acquires target distribution characteristics while accounting for label dependencies. We applied this approach to a sample of research articles from Web of Science labeled with 64 biomedical topic categories. We aimed to preserve category frequency order, reduce frequency differences between most and least common categories, and account for category dependencies. This approach produced a more balanced sub-sample, enhancing the representation of minority categories.