Abstract:We develop new experimental paradigms for measuring welfare in language models. We compare verbal reports of models about their preferences with preferences expressed through behavior when navigating a virtual environment and selecting conversation topics. We also test how costs and rewards affect behavior and whether responses to an eudaimonic welfare scale - measuring states such as autonomy and purpose in life - are consistent across semantically equivalent prompts. Overall, we observed a notable degree of mutual support between our measures. The reliable correlations observed between stated preferences and behavior across conditions suggest that preference satisfaction can, in principle, serve as an empirically measurable welfare proxy in some of today's AI systems. Furthermore, our design offered an illuminating setting for qualitative observation of model behavior. Yet, the consistency between measures was more pronounced in some models and conditions than others and responses were not consistent across perturbations. Due to this, and the background uncertainty about the nature of welfare and the cognitive states (and welfare subjecthood) of language models, we are currently uncertain whether our methods successfully measure the welfare state of language models. Nevertheless, these findings highlight the feasibility of welfare measurement in language models, inviting further exploration.
Abstract:AGI Racing is the view that it is in the self-interest of major actors in AI development, especially powerful nations, to accelerate their frontier AI development to build highly capable AI, especially artificial general intelligence (AGI), before competitors have a chance. We argue against AGI Racing. First, the downsides of racing to AGI are much higher than portrayed by this view. Racing to AGI would substantially increase catastrophic risks from AI, including nuclear instability, and undermine the prospects of technical AI safety research to be effective. Second, the expected benefits of racing may be lower than proponents of AGI Racing hold. In particular, it is questionable whether winning the race enables complete domination over losers. Third, international cooperation and coordination, and perhaps carefully crafted deterrence measures, constitute viable alternatives to racing to AGI which have much smaller risks and promise to deliver most of the benefits that racing to AGI is supposed to provide. Hence, racing to AGI is not in anyone's self-interest as other actions, particularly incentivizing and seeking international cooperation around AI issues, are preferable.
Abstract:Creating systems that are aligned with our goals is seen as a leading approach to create safe and beneficial AI in both leading AI companies and the academic field of AI safety. We defend the view that misaligned AGI - future, generally intelligent (robotic) AI agents - poses catastrophic risks. At the same time, we support the view that aligned AGI creates a substantial risk of catastrophic misuse by humans. While both risks are severe and stand in tension with one another, we show that - in principle - there is room for alignment approaches which do not increase misuse risk. We then investigate how the tradeoff between misalignment and misuse looks empirically for different technical approaches to AI alignment. Here, we argue that many current alignment techniques and foreseeable improvements thereof plausibly increase risks of catastrophic misuse. Since the impacts of AI depend on the social context, we close by discussing important social factors and suggest that to reduce the risk of a misuse catastrophe due to aligned AGI, techniques such as robustness, AI control methods and especially good governance seem essential.