Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Algorithmic recourse aims to recommend actionable changes to a factual's attributes that flip an unfavorable model decision while remaining realistic and feasible. We formulate recourse as a Constrained Maximum A-Posteriori (MAP) inference problem under the accepted-class data distribution seeking counterfactuals with high likelihood while respecting other recourse constraints. We present PAR, an amortized approximate inference procedure that generates highly likely recourses efficiently. Recourse likelihood is estimated directly using tractable probabilistic models that admit exact likelihood evaluation and efficient gradient propagation that is useful during training. The recourse generator is trained with the objective of maximizing the likelihood under the accepted-class distribution while minimizing the likelihood under the denied-class distribution and other losses that encode recourse constraints. Furthermore, PAR includes a neighborhood-based conditioning mechanism to promote recourse generation that is customized to a factual. We validate PAR on widely used algorithmic recourse datasets and demonstrate its efficiency in generating recourses that are valid, similar to the factual, sparse, and highly plausible, yielding superior performance over existing state-of-the-art approaches.
Machine learning systems can produce personalized outputs that allow an adversary to infer sensitive input attributes at inference time. We introduce Robust Privacy (RP), an inference-time privacy notion inspired by certified robustness: if a model's prediction is provably invariant within a radius-$R$ neighborhood around an input $x$ (e.g., under the $\ell_2$ norm), then $x$ enjoys $R$-Robust Privacy, i.e., observing the prediction cannot distinguish $x$ from any input within distance $R$ of $x$. We further develop Attribute Privacy Enhancement (APE) to translate input-level invariance into an attribute-level privacy effect. In a controlled recommendation task where the decision depends primarily on a sensitive attribute, we show that RP expands the set of sensitive-attribute values compatible with a positive recommendation, expanding the inference interval accordingly. Finally, we empirically demonstrate that RP also mitigates model inversion attacks (MIAs) by masking fine-grained input-output dependence. Even at small noise levels ($σ=0.1$), RP reduces the attack success rate (ASR) from 73% to 4% with partial model performance degradation. RP can also partially mitigate MIAs (e.g., ASR drops to 44%) with no model performance degradation.
Cross-domain recommendation (CDR) has been increasingly explored to address data sparsity and cold-start issues. However, recent approaches typically disentangle domain-invariant features shared between source and target domains, as well as domain-specific features for each domain. However, they often rely solely on domain-invariant features combined with target domain-specific features, which can lead to suboptimal performance. To overcome the limitations, this paper presents the Adversarial Alignment and Disentanglement Cross-Domain Recommendation ($A^2DCDR$ ) model, an innovative approach designed to capture a comprehensive range of cross-domain information, including both domain-invariant and valuable non-aligned features. The $A^2DCDR$ model enhances cross-domain recommendation through three key components: refining MMD with adversarial training for better generalization, employing a feature disentangler and reconstruction mechanism for intra-domain disentanglement, and introducing a novel fused representation combining domain-invariant, non-aligned features with original contextual data. Experiments on real-world datasets and online A/B testing show that $A^2DCDR$ outperforms existing methods, confirming its effectiveness and practical applicability. The code is provided at https://github.com/youzi0925/A-2DCDR/tree/main.
Entity matching is a crucial component in various recommender systems, including conversational recommender systems (CRS) and knowledge-based recommender systems. However, the lack of rigorous evaluation frameworks for cross-dataset entity matching impedes progress in areas such as LLM-driven conversational recommendations and knowledge-grounded dataset construction. In this paper, we introduce Reddit-Amazon-EM, a novel dataset comprising naturally occurring items from Reddit and the Amazon '23 dataset. Through careful manual annotation, we identify corresponding movies across Reddit-Movies and Amazon'23, two existing recommender system datasets with inherently overlapping catalogs. Leveraging Reddit-Amazon-EM, we conduct a comprehensive evaluation of state-of-the-art entity matching methods, including rule-based, graph-based, lexical-based, embedding-based, and LLM-based approaches. For reproducible research, we release our manually annotated entity matching gold set and provide the mapping between the two datasets using the best-performing method from our experiments. This serves as a valuable resource for advancing future work on entity matching in recommender systems.
Efficiently selecting relevant content from vast candidate pools is a critical challenge in modern recommender systems. Traditional methods, such as item-to-item collaborative filtering (CF) and two-tower models, often fall short in capturing the complex user-item interactions due to uniform truncation strategies and overdue user-item crossing. To address these limitations, we propose Personalized Item-to-Item (PI2I), a novel two-stage retrieval framework that enhances the personalization capabilities of CF. In the first Indexer Building Stage (IBS), we optimize the retrieval pool by relaxing truncation thresholds to maximize Hit Rate, thereby temporarily retaining more items users might be interested in. In the second Personalized Retrieval Stage (PRS), we introduce an interactive scoring model to overcome the limitations of inner product calculations, allowing for richer modeling of intricate user-item interactions. Additionally, we construct negative samples based on the trigger-target (item-to-item) relationship, ensuring consistency between offline training and online inference. Offline experiments on large-scale real-world datasets demonstrate that PI2I outperforms traditional CF methods and rivals Two-Tower models. Deployed in the "Guess You Like" section on Taobao, PI2I achieved a 1.05% increase in online transaction rates. In addition, we have released a large-scale recommendation dataset collected from Taobao, containing 130 million real-world user interactions used in the experiments of this paper. The dataset is publicly available at https://huggingface.co/datasets/PI2I/PI2I, which could serve as a valuable benchmark for the research community.
Rapid financial innovation has been accompanied by a sharp increase in patenting activity, making timely and comprehensive prior-art discovery more difficult. This problem is especially evident in financial technologies, where innovations develop quickly, patent collections grow continuously, and citation recommendation systems must be updated as new applications arrive. Existing patent retrieval and citation recommendation methods typically rely on static indexes or periodic retraining, which limits their ability to operate effectively in such dynamic settings. In this study, we propose a real-time patent citation recommendation framework designed for large and fast-changing financial patent corpora. Using a dataset of 428,843 financial patents granted by the China National Intellectual Property Administration (CNIPA) between 2000 and 2024, we build a three-stage recommendation pipeline. The pipeline uses large language model (LLM) embeddings to represent the semantic content of patent abstracts, applies efficient approximate nearest-neighbor search to construct a manageable candidate set, and ranks candidates by semantic similarity to produce top-k citation recommendations. In addition to improving recommendation accuracy, the proposed framework directly addresses the dynamic nature of patent systems. By using an incremental indexing strategy based on hierarchical navigable small-world (HNSW) graphs, newly issued patents can be added without rebuilding the entire index. A rolling day-by-day update experiment shows that incremental updating improves recall while substantially reducing computational cost compared with rebuild-based indexing. The proposed method also consistently outperforms traditional text-based baselines and alternative nearest-neighbor retrieval approaches.
The construction industry faces productivity stagnation, skilled labor shortages, and safety concerns. While robotic automation offers solutions, construction robots struggle to adapt to unstructured, dynamic sites. Central to this is improvisation, adapting to unexpected situations through creative problem-solving, which remains predominantly human. In construction's unpredictable environments, collaborative human-robot improvisation is essential for workflow continuity. This research develops a six-level taxonomy classifying human-robot collaboration (HRC) based on improvisation capabilities. Through systematic review of 214 articles (2010-2025), we categorize construction robotics across: Manual Work (Level 0), Human-Controlled Execution (Level 1), Adaptive Manipulation (Level 2), Imitation Learning (Level 3), Human-in-Loop BIM Workflow (Level 4), Cloud-Based Knowledge Integration (Level 5), and True Collaborative Improvisation (Level 6). Analysis reveals current research concentrates at lower levels, with critical gaps in experiential learning and limited progression toward collaborative improvisation. A five-dimensional radar framework illustrates progressive evolution of Planning, Cognitive Role, Physical Execution, Learning Capability, and Improvisation, demonstrating how complementary human-robot capabilities create team performance exceeding individual contributions. The research identifies three fundamental barriers: technical limitations in grounding and dialogic reasoning, conceptual gaps between human improvisation and robotics research, and methodological challenges. We recommend future research emphasizing improved human-robot communication via Augmented/Virtual Reality interfaces, large language model integration, and cloud-based knowledge systems to advance toward true collaborative improvisation.
Erratum to the paper (Zhang et al., 2025): corrections to Table IV and the data in Page 3, Section A. In the post-pandemic era, a high proportion of civil aviation passengers wear masks during security checks, posing significant challenges to traditional face recognition models. The backbone network serves as the core component of face recognition models. In standard tests, r100 series models excelled (98%+ accuracy at 0.01% FAR in face comparison, high top1/top5 in search). r50 ranked second, r34_mask_v1 lagged. In masked tests, r100_mask_v2 led (90.07% accuracy), r50_mask_v3 performed best among r50 but trailed r100. Vit-Small/Tiny showed strong masked performance with gains in effectiveness. Through extensive comparative experiments, this paper conducts a comprehensive evaluation of several core backbone networks, aiming to reveal the impacts of different models on face recognition with and without masks, and provide specific deployment recommendations.
Generative Sequential Recommendation (GSR) has emerged as a promising paradigm, reframing recommendation as an autoregressive sequence generation task over discrete Semantic IDs (SIDs), typically derived via codebook-based quantization. Despite its great potential in unifying retrieval and ranking, existing GSR frameworks still face two critical limitations: (1) impure and unstable semantic tokenization, where quantization methods struggle with interaction noise and codebook collapse, resulting in SIDs with ambiguous discrimination; and (2) lossy and weakly structured generation, where reliance solely on coarse-grained discrete tokens inevitably introduces information loss and neglects items' hierarchical logic. To address these issues, we propose a novel generative recommendation framework, PRISM, with Purified Representation and Integrated Semantic Modeling. Specifically, to ensure high-quality tokenization, we design a Purified Semantic Quantizer that constructs a robust codebook via adaptive collaborative denoising and hierarchical semantic anchoring mechanisms. To compensate for information loss during quantization, we further propose an Integrated Semantic Recommender, which incorporates a dynamic semantic integration mechanism to integrate fine-grained semantics and enforces logical validity through a semantic structure alignment objective. PRISM consistently outperforms state-of-the-art baselines across four real-world datasets, demonstrating substantial performance gains, particularly in high-sparsity scenarios.
A reliable executable environment is the foundation for ensuring that large language models solve software engineering tasks. Due to the complex and tedious construction process, large-scale configuration is relatively inefficient. However, most methods always overlook fine-grained analysis of the actions performed by the agent, making it difficult to handle complex errors and resulting in configuration failures. To address this bottleneck, we propose EvoConfig, an efficient environment configuration framework that optimizes multi-agent collaboration to build correct runtime environments. EvoConfig features an expert diagnosis module for fine-grained post-execution analysis, and a self-evolving mechanism that lets expert agents self-feedback and dynamically adjust error-fixing priorities in real time. Empirically, EvoConfig matches the previous state-of-the-art Repo2Run on Repo2Run's 420 repositories, while delivering clear gains on harder cases: on the more challenging Envbench, EvoConfig achieves a 78.1% success rate, outperforming Repo2Run by 7.1%. Beyond end-to-end success, EvoConfig also demonstrates stronger debugging competence, achieving higher accuracy in error identification and producing more effective repair recommendations than existing methods.