Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Large language models (LLMs) have demonstrated remarkable potential in transforming recommender systems from implicit behavioral pattern matching to explicit intent reasoning. While RecGPT-V1 successfully pioneered this paradigm by integrating LLM-based reasoning into user interest mining and item tag prediction, it suffers from four fundamental limitations: (1) computational inefficiency and cognitive redundancy across multiple reasoning routes; (2) insufficient explanation diversity in fixed-template generation; (3) limited generalization under supervised learning paradigms; and (4) simplistic outcome-focused evaluation that fails to match human standards. To address these challenges, we present RecGPT-V2 with four key innovations. First, a Hierarchical Multi-Agent System restructures intent reasoning through coordinated collaboration, eliminating cognitive duplication while enabling diverse intent coverage. Combined with Hybrid Representation Inference that compresses user-behavior contexts, our framework reduces GPU consumption by 60% and improves exclusive recall from 9.39% to 10.99%. Second, a Meta-Prompting framework dynamically generates contextually adaptive prompts, improving explanation diversity by +7.3%. Third, constrained reinforcement learning mitigates multi-reward conflicts, achieving +24.1% improvement in tag prediction and +13.0% in explanation acceptance. Fourth, an Agent-as-a-Judge framework decomposes assessment into multi-step reasoning, improving human preference alignment. Online A/B tests on Taobao demonstrate significant improvements: +2.98% CTR, +3.71% IPV, +2.19% TV, and +11.46% NER. RecGPT-V2 establishes both the technical feasibility and commercial viability of deploying LLM-powered intent reasoning at scale, bridging the gap between cognitive exploration and industrial utility.
Sparse longitudinal (SL) textual data arises when individuals generate text repeatedly over time (e.g., customer reviews, occasional social media posts, electronic medical records across visits), but the frequency and timing of observations vary across individuals. These complex textual data sets have immense potential to inform future policy and targeted recommendations. However, because SL text data lack dedicated methods and are noisy, heterogeneous, and prone to anomalies, detecting and inferring key patterns is challenging. We introduce LLmFPCA-detect, a flexible framework that pairs LLM-based text embeddings with functional data analysis to detect clusters and infer anomalies in large SL text datasets. First, LLmFPCA-detect embeds each piece of text into an application-specific numeric space using LLM prompts. Sparse multivariate functional principal component analysis (mFPCA) conducted in the numeric space forms the workhorse to recover primary population characteristics, and produces subject-level scores which, together with baseline static covariates, facilitate data segmentation, unsupervised anomaly detection and inference, and enable other downstream tasks. In particular, we leverage LLMs to perform dynamic keyword profiling guided by the data segments and anomalies discovered by LLmFPCA-detect, and we show that cluster-specific functional PC scores from LLmFPCA-detect, used as features in existing pipelines, help boost prediction performance. We support the stability of LLmFPCA-detect with experiments and evaluate it on two different applications using public datasets, Amazon customer-review trajectories, and Wikipedia talk-page comment streams, demonstrating utility across domains and outperforming state-of-the-art baselines.
Agentic AI introduces security vulnerabilities that traditional LLM safeguards fail to address. Although recent work by Unit 42 at Palo Alto Networks demonstrated that ChatGPT-4o successfully executes attacks as an agent that it refuses in chat mode, there is no comparative analysis in multiple models and frameworks. We conducted the first systematic penetration testing and comparative evaluation of agentic AI systems, testing five prominent models (Claude 3.5 Sonnet, Gemini 2.5 Flash, GPT-4o, Grok 2, and Nova Pro) across two agentic AI frameworks (AutoGen and CrewAI) using a seven-agent architecture that mimics the functionality of a university information management system and 13 distinct attack scenarios that span prompt injection, Server Side Request Forgery (SSRF), SQL injection, and tool misuse. Our 130 total test cases reveal significant security disparities: AutoGen demonstrates a 52.3% refusal rate versus CrewAI's 30.8%, while model performance ranges from Nova Pro's 46.2% to Claude and Grok 2's 38.5%. Most critically, Grok 2 on CrewAI rejected only 2 of 13 attacks (15.4% refusal rate), and the overall refusal rate of 41.5% across all configurations indicates that more than half of malicious prompts succeeded despite enterprise-grade safety mechanisms. We identify six distinct defensive behavior patterns including a novel "hallucinated compliance" strategy where models fabricate outputs rather than executing or refusing attacks, and provide actionable recommendations for secure agent deployment. Complete attack prompts are also included in the Appendix to enable reproducibility.
Sequential recommender systems have demonstrated strong capabilities in modeling users' dynamic preferences and capturing item transition patterns. However, real-world user behaviors are often noisy due to factors such as human errors, uncertainty, and behavioral ambiguity, which can lead to degraded recommendation performance. To address this issue, recent approaches widely adopt self-supervised learning (SSL), particularly contrastive learning, by generating perturbed views of user interaction sequences and maximizing their mutual information to improve model robustness. However, these methods heavily rely on their pre-defined static augmentation strategies~(where the augmentation type remains fixed once chosen) to construct augmented views, leading to two critical challenges: (1) the optimal augmentation type can vary significantly across different scenarios; (2) inappropriate augmentations may even degrade recommendation performance, limiting the effectiveness of SSL. To overcome these limitations, we propose an adaptive augmentation framework. We first unify existing basic augmentation operations into a unified formulation via structured transformation matrices. Building on this, we introduce AsarRec (Adaptive Sequential Augmentation for Robust Sequential Recommendation), which learns to generate transformation matrices by encoding user sequences into probabilistic transition matrices and projecting them into hard semi-doubly stochastic matrices via a differentiable Semi-Sinkhorn algorithm. To ensure that the learned augmentations benefit downstream performance, we jointly optimize three objectives: diversity, semantic invariance, and informativeness. Extensive experiments on three benchmark datasets under varying noise levels validate the effectiveness of AsarRec, demonstrating its superior robustness and consistent improvements.
Inspired by advances in LLMs, reasoning-enhanced sequential recommendation performs multi-step deliberation before making final predictions, unlocking greater potential for capturing user preferences. However, current methods are constrained by static reasoning trajectories that are ill-suited for the diverse complexity of user behaviors. They suffer from two key limitations: (1) a static reasoning direction, which uses flat supervision signals misaligned with human-like hierarchical reasoning, and (2) a fixed reasoning depth, which inefficiently applies the same computational effort to all users, regardless of pattern complexity. These rigidity lead to suboptimal performance and significant computational waste. To overcome these challenges, we propose DTRec, a novel and effective framework that explores the Dynamic reasoning Trajectory for Sequential Recommendation along both direction and depth. To guide the direction, we develop Hierarchical Process Supervision (HPS), which provides coarse-to-fine supervisory signals to emulate the natural, progressive refinement of human cognitive processes. To optimize the depth, we introduce the Adaptive Reasoning Halting (ARH) mechanism that dynamically adjusts the number of reasoning steps by jointly monitoring three indicators. Extensive experiments on three real-world datasets demonstrate the superiority of our approach, achieving up to a 24.5% performance improvement over strong baselines while simultaneously reducing computational cost by up to 41.6%.
The self-attention mechanism in Transformer-based Large Language Models (LLMs) scales quadratically with input length, making long-context inference expensive. Sliding window attention (SWA) reduces this cost to linear complexity, but naively enabling complete SWA at inference-time for models pretrained with full attention (FA) causes severe long-context performance degradation due to training-inference mismatch. This makes us wonder: Can FA-pretrained LLMs be well adapted to SWA without pretraining? We investigate this by proposing Sliding Window Attention Adaptation (SWAA), a set of practical recipes that combine five methods for better adaptation: (1) applying SWA only during prefilling; (2) preserving "sink" tokens; (3) interleaving FA/SWA layers; (4) chain-of-thought (CoT); and (5) fine-tuning. Our experiments show that SWA adaptation is feasible while non-trivial: no single method suffices, yet specific synergistic combinations effectively recover the original long-context performance. We further analyze the performance-efficiency trade-offs of different SWAA configurations and provide recommended recipes for diverse scenarios, which can greatly and fundamentally accelerate LLM long-context inference speed by up to 100%. Our code is available at https://github.com/yuyijiong/sliding-window-attention-adaptation
Video recognition systems are increasingly being deployed in daily life, such as content recommendation and security monitoring. To enhance video recognition development, many institutions have released high-quality public datasets with open-source licenses for training advanced models. At the same time, these datasets are also susceptible to misuse and infringement. Dataset copyright auditing is an effective solution to identify such unauthorized use. However, existing dataset copyright solutions primarily focus on the image domain; the complex nature of video data leaves dataset copyright auditing in the video domain unexplored. Specifically, video data introduces an additional temporal dimension, which poses significant challenges to the effectiveness and stealthiness of existing methods. In this paper, we propose VICTOR, the first dataset copyright auditing approach for video recognition systems. We develop a general and stealthy sample modification strategy that enhances the output discrepancy of the target model. By modifying only a small proportion of samples (e.g., 1%), VICTOR amplifies the impact of published modified samples on the prediction behavior of the target models. Then, the difference in the model's behavior for published modified and unpublished original samples can serve as a key basis for dataset auditing. Extensive experiments on multiple models and datasets highlight the superiority of VICTOR. Finally, we show that VICTOR is robust in the presence of several perturbation mechanisms to the training videos or the target models.
Click-Through Rate (CTR) prediction, a core task in recommendation systems, aims to estimate the probability of users clicking on items. Existing models predominantly follow a discriminative paradigm, which relies heavily on explicit interactions between raw ID embeddings. However, this paradigm inherently renders them susceptible to two critical issues: embedding dimensional collapse and information redundancy, stemming from the over-reliance on feature interactions \emph{over raw ID embeddings}. To address these limitations, we propose a novel \emph{Supervised Feature Generation (SFG)} framework, \emph{shifting the paradigm from discriminative ``feature interaction" to generative ``feature generation"}. Specifically, SFG comprises two key components: an \emph{Encoder} that constructs hidden embeddings for each feature, and a \emph{Decoder} tasked with regenerating the feature embeddings of all features from these hidden representations. Unlike existing generative approaches that adopt self-supervised losses, we introduce a supervised loss to utilize the supervised signal, \ie, click or not, in the CTR prediction task. This framework exhibits strong generalizability: it can be seamlessly integrated with most existing CTR models, reformulating them under the generative paradigm. Extensive experiments demonstrate that SFG consistently mitigates embedding collapse and reduces information redundancy, while yielding substantial performance gains across various datasets and base models. The code is available at https://github.com/USTC-StarTeam/GE4Rec.
Sequential recommendation systems aim to capture users' evolving preferences from their interaction histories. Recent reasoningenhanced methods have shown promise by introducing deliberate, chain-of-thought-like processes with intermediate reasoning steps. However, these methods rely solely on the next target item as supervision, leading to two critical issues: (1) reasoning instability--the process becomes overly sensitive to recent behaviors and spurious interactions like accidental clicks, and (2) surface-level reasoning--the model memorizes item-to-item transitions rather than understanding intrinsic behavior patterns. To address these challenges, we propose IGR-SR, an Intent-Guided Reasoning framework for Sequential Recommendation that anchors the reasoning process to explicitly extracted high-level intents. Our framework comprises three key components: (1) a Latent Intent Distiller (LID) that efficiently extracts multi-faceted intents using a frozen encoder with learnable tokens, (2) an Intent-aware Deliberative Reasoner (IDR) that decouples reasoning into intent deliberation and decision-making via a dual-attention architecture, and (3) an Intent Consistency Regularization (ICR) that ensures robustness by enforcing consistent representations across different intent views. Extensive experiments on three public datasets demonstrate that IGR-SR achieves an average 7.13% improvement over state-of-the-art baselines. Critically, under 20% behavioral noise, IGR-SR degrades only 10.4% compared to 16.2% and 18.6% for competing methods, validating the effectiveness and robustness of intent-guided reasoning.
Current safety evaluations of large language models rely on single-shot testing, implicitly assuming that model responses are deterministic and representative of the model's safety alignment. We challenge this assumption by investigating the stability of safety refusal decisions across random seeds and temperature settings. Testing four instruction-tuned models from three families (Llama 3.1 8B, Qwen 2.5 7B, Qwen 3 8B, Gemma 3 12B) on 876 harmful prompts across 20 different sampling configurations (4 temperatures x 5 random seeds), we find that 18-28% of prompts exhibit decision flips--the model refuses in some configurations but complies in others--depending on the model. Our Safety Stability Index (SSI) reveals that higher temperatures significantly reduce decision stability (Friedman chi-squared = 396.81, p < 0.001), with mean within-temperature SSI dropping from 0.977 at temperature 0.0 to 0.942 at temperature 1.0. We validate our findings across all model families using Claude 3.5 Haiku as a unified external judge, achieving 89.0% inter-judge agreement with our primary Llama 70B judge (Cohen's kappa = 0.62). Within each model, prompts with higher compliance rates exhibit lower stability (Spearman rho = -0.47 to -0.70, all p < 0.001), indicating that models "waver" more on borderline requests. These findings demonstrate that single-shot safety evaluations are insufficient for reliable safety assessment and that evaluation protocols must account for stochastic variation in model behavior. We show that single-shot evaluation agrees with multi-sample ground truth only 92.4% of the time when pooling across temperatures (94.2-97.7% at fixed temperature depending on setting), and recommend using at least 3 samples per prompt for reliable safety assessment.