Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
We present a lightweight neuro-symbolic framework to mitigate over-personalization in LLM-based recommender systems by adapting user-side Knowledge Graphs (KGs) at inference time. Instead of retraining models or relying on opaque heuristics, our method restructures a user's Personalized Knowledge Graph (PKG) to suppress feature co-occurrence patterns that reinforce Personalized Information Environments (PIEs), i.e., algorithmically induced filter bubbles that constrain content diversity. These adapted PKGs are used to construct structured prompts that steer the language model toward more diverse, Out-PIE recommendations while preserving topical relevance. We introduce a family of symbolic adaptation strategies, including soft reweighting, hard inversion, and targeted removal of biased triples, and a client-side learning algorithm that optimizes their application per user. Experiments on a recipe recommendation benchmark show that personalized PKG adaptations significantly increase content novelty while maintaining recommendation quality, outperforming global adaptation and naive prompt-based methods.




We introduce SimpleQA Verified, a 1,000-prompt benchmark for evaluating Large Language Model (LLM) short-form factuality based on OpenAI's SimpleQA. It addresses critical limitations in OpenAI's benchmark, including noisy and incorrect labels, topical biases, and question redundancy. SimpleQA Verified was created through a rigorous multi-stage filtering process involving de-duplication, topic balancing, and source reconciliation to produce a more reliable and challenging evaluation set, alongside improvements in the autorater prompt. On this new benchmark, Gemini 2.5 Pro achieves a state-of-the-art F1-score of 55.6, outperforming other frontier models, including GPT-5. This work provides the research community with a higher-fidelity tool to track genuine progress in parametric model factuality and to mitigate hallucinations. The benchmark dataset, evaluation code, and leaderboard are available at: https://www.kaggle.com/benchmarks/deepmind/simpleqa-verified.
We develop new experimental paradigms for measuring welfare in language models. We compare verbal reports of models about their preferences with preferences expressed through behavior when navigating a virtual environment and selecting conversation topics. We also test how costs and rewards affect behavior and whether responses to an eudaimonic welfare scale - measuring states such as autonomy and purpose in life - are consistent across semantically equivalent prompts. Overall, we observed a notable degree of mutual support between our measures. The reliable correlations observed between stated preferences and behavior across conditions suggest that preference satisfaction can, in principle, serve as an empirically measurable welfare proxy in some of today's AI systems. Furthermore, our design offered an illuminating setting for qualitative observation of model behavior. Yet, the consistency between measures was more pronounced in some models and conditions than others and responses were not consistent across perturbations. Due to this, and the background uncertainty about the nature of welfare and the cognitive states (and welfare subjecthood) of language models, we are currently uncertain whether our methods successfully measure the welfare state of language models. Nevertheless, these findings highlight the feasibility of welfare measurement in language models, inviting further exploration.
Stories play a pivotal role in human communication, shaping beliefs and morals, particularly in children. As parents increasingly rely on large language models (LLMs) to craft bedtime stories, the presence of cultural and gender stereotypes in these narratives raises significant concerns. To address this issue, we present Biased Tales, a comprehensive dataset designed to analyze how biases influence protagonists' attributes and story elements in LLM-generated stories. Our analysis uncovers striking disparities. When the protagonist is described as a girl (as compared to a boy), appearance-related attributes increase by 55.26%. Stories featuring non-Western children disproportionately emphasize cultural heritage, tradition, and family themes far more than those for Western children. Our findings highlight the role of sociocultural bias in making creative AI use more equitable and diverse.
The emergence of large language models (LLMs) has brought a new paradigm to automated essay scoring (AES), a long-standing and practical application of natural language processing in education. However, achieving human-level multi-perspective understanding and judgment remains a challenge. In this work, we propose Roundtable Essay Scoring (RES), a multi-agent evaluation framework designed to perform precise and human-aligned scoring under a zero-shot setting. RES constructs evaluator agents based on LLMs, each tailored to a specific prompt and topic context. Each agent independently generates a trait-based rubric and conducts a multi-perspective evaluation. Then, by simulating a roundtable-style discussion, RES consolidates individual evaluations through a dialectical reasoning process to produce a final holistic score that more closely aligns with human evaluation. By enabling collaboration and consensus among agents with diverse evaluation perspectives, RES outperforms prior zero-shot AES approaches. Experiments on the ASAP dataset using ChatGPT and Claude show that RES achieves up to a 34.86% improvement in average QWK over straightforward prompting (Vanilla) methods.
Adopting Large language models (LLMs) in organizations potentially revolutionizes our lives and work. However, they can generate off-topic, discriminating, or harmful content. This AI alignment problem often stems from misspecifications during the LLM adoption, unnoticed by the principal due to the LLM's black-box nature. While various research disciplines investigated AI alignment, they neither address the information asymmetries between organizational adopters and black-box LLM agents nor consider organizational AI adoption processes. Therefore, we propose LLM ATLAS (LLM Agency Theory-Led Alignment Strategy) a conceptual framework grounded in agency (contract) theory, to mitigate alignment problems during organizational LLM adoption. We conduct a conceptual literature analysis using the organizational LLM adoption phases and the agency theory as concepts. Our approach results in (1) providing an extended literature analysis process specific to AI alignment methods during organizational LLM adoption and (2) providing a first LLM alignment problem-solution space.
With massive texts on social media, users and analysts often rely on topic modeling techniques to quickly extract key themes and gain insights. Traditional topic modeling techniques, such as Latent Dirichlet Allocation (LDA), provide valuable insights but are computationally expensive, making them impractical for real-time data analysis. Although recent advances in distributed training and fast sampling methods have improved efficiency, real-time topic exploration remains a significant challenge. In this paper, we present MLego, an interactive query framework designed to support real-time topic modeling analysis by leveraging model materialization and reuse. Instead of retraining models from scratch, MLego efficiently merges materialized topic models to construct approximate results at interactive speeds. To further enhance efficiency, we introduce a hierarchical plan search strategy for single queries and an optimized query reordering technique for batch queries. We integrate MLego into a visual analytics prototype system, enabling users to explore large-scale textual datasets through interactive queries. Extensive experiments demonstrate that MLego significantly reduces computation costs while maintaining high-quality topic modeling results. MLego enhances existing visual analytics approaches, which primarily focus on user-driven topic modeling, by enabling real-time, query-driven exploration. This complements traditional methods and bridges the gap between scalable topic modeling and interactive data analysis.
Federated learning has the potential to unlock siloed data and distributed resources by enabling collaborative model training without sharing private data. As more complex foundational models gain widespread use, the need to expand training resources and integrate privately owned data grows as well. In this article, we explore the intersection of federated learning and foundational models, aiming to identify, categorize, and characterize technical methods that integrate the two paradigms. As a unified survey is currently unavailable, we present a literature survey structured around a novel taxonomy that follows the development life-cycle stages, along with a technical comparison of available methods. Additionally, we provide practical insights and guidelines for implementing and evolving these methods, with a specific focus on the healthcare domain as a case study, where the potential impact of federated learning and foundational models is considered significant. Our survey covers multiple intersecting topics, including but not limited to federated learning, self-supervised learning, fine-tuning, distillation, and transfer learning. Initially, we retrieved and reviewed a set of over 4,200 articles. This collection was narrowed to more than 250 thoroughly reviewed articles through inclusion criteria, featuring 42 unique methods. The methods were used to construct the taxonomy and enabled their comparison based on complexity, efficiency, and scalability. We present these results as a self-contained overview that not only summarizes the state of the field but also provides insights into the practical aspects of adopting, evolving, and integrating foundational models with federated learning.
Generative AI applications commonly leverage user personas as a steering mechanism for synthetic data generation, but reliance on natural language representations forces models to make unintended inferences about which attributes to emphasize, limiting precise control over outputs. We introduce PILOT (Psychological and Linguistic Output Targeting), a two-phase framework for steering large language models with structured psycholinguistic profiles. In Phase 1, PILOT translates natural language persona descriptions into multidimensional profiles with normalized scores across linguistic and psychological dimensions. In Phase 2, these profiles guide generation along measurable axes of variation. We evaluate PILOT across three state-of-the-art LLMs (Mistral Large 2, Deepseek-R1, LLaMA 3.3 70B) using 25 synthetic personas under three conditions: Natural-language Persona Steering (NPS), Schema-Based Steering (SBS), and Hybrid Persona-Schema Steering (HPS). Results demonstrate that schema-based approaches significantly reduce artificial-sounding persona repetition while improving output coherence, with silhouette scores increasing from 0.098 to 0.237 and topic purity from 0.773 to 0.957. Our analysis reveals a fundamental trade-off: SBS produces more concise outputs with higher topical consistency, while NPS offers greater lexical diversity but reduced predictability. HPS achieves a balance between these extremes, maintaining output variety while preserving structural consistency. Expert linguistic evaluation confirms that PILOT maintains high response quality across all conditions, with no statistically significant differences between steering approaches.
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.