What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Aug 27, 2025
Abstract:In reinforcement learning with human feedback (RLHF), reward models can efficiently learn and amplify latent biases within multimodal datasets, which can lead to imperfect policy optimization through flawed reward signals and decreased fairness. Bias mitigation studies have often applied passive constraints, which can fail under causal confounding. Here, we present a counterfactual reward model that introduces causal inference with multimodal representation learning to provide an unsupervised, bias-resilient reward signal. The heart of our contribution is the Counterfactual Trust Score, an aggregated score consisting of four components: (1) counterfactual shifts that decompose political framing bias from topical bias; (2) reconstruction uncertainty during counterfactual perturbations; (3) demonstrable violations of fairness rules for each protected attribute; and (4) temporal reward shifts aligned with dynamic trust measures. We evaluated the framework on a multimodal fake versus true news dataset, which exhibits framing bias, class imbalance, and distributional drift. Following methodologies similar to unsupervised drift detection from representation-based distances [1] and temporal robustness benchmarking in language models [2], we also inject synthetic bias across sequential batches to test robustness. The resulting system achieved an accuracy of 89.12% in fake news detection, outperforming the baseline reward models. More importantly, it reduced spurious correlations and unfair reinforcement signals. This pipeline outlines a robust and interpretable approach to fairness-aware RLHF, offering tunable bias reduction thresholds and increasing reliability in dynamic real-time policy making.
Via

Aug 26, 2025
Abstract:\Abstract{In the realm of education, student evaluation holds equal significance as imparting knowledge. To be evaluated, students usually need to go through text-based academic assessment methods. Instructors need to make diverse sets of questions that need to be fair for all students to prove their adequacy over a particular topic. This can prove to be quite challenging as they may need to manually go through several different lecture materials. Our objective is to make this whole process much easier by implementing Automatic Question Answer Generation /(AQAG), using fine-tuned generative LLM. For tailoring the instructor's preferred question style (MCQ, conceptual, or factual questions), prompt Engineering (PE) is being utilized. In this research, we propose to leverage unsupervised learning methods in NLP, primarily focusing on the English language. This approach empowers the base Meta-Llama 2-7B model to integrate RACE dataset as training data for the fine-tuning process. Creating a customized model that will offer efficient solutions for educators, instructors, and individuals engaged in text-based evaluations. A reliable and efficient tool for generating questions and answers can free up valuable time and resources, thus streamlining their evaluation processes.}
Via

Aug 01, 2025
Abstract:The amount of text generated daily on social media is gigantic and analyzing this text is useful for many purposes. To understand what lies beneath a huge amount of text, we need dependable and effective computing techniques from self-powered topic models. Nevertheless, there are currently relatively few thorough quantitative comparisons between these models. In this study, we compare these models and propose an assessment metric that documents how the topics change in time.
Via

Aug 10, 2025
Abstract:Given recent breakthroughs in Generative Artificial Intelligence (GAI) and Large Language Models (LLMs), more and more professional services are being augmented through Artificial Intelligence (AI), which once seemed impossible to automate. This paper presents a modular model for leveraging GAI in developing strategic plans for large scale government organizations and evaluates leading machine learning techniques in their application towards one of the identified modules. Specifically, the performance of BERTopic and Non-negative Matrix Factorization (NMF) are evaluated in their ability to use topic modeling to generate themes representative of Vision Elements within a strategic plan. To accomplish this, BERTopic and NMF models are trained using a large volume of reports from the Government Accountability Office (GAO). The generated topics from each model are then scored for similarity against the Vision Elements of a published strategic plan and the results are compared. Our results show that these techniques are capable of generating themes similar to 100% of the elements being evaluated against. Further, we conclude that BERTopic performs best in this application with more than half of its correlated topics achieving a "medium" or "strong" correlation. A capability of GAI-enabled strategic plan development impacts a multi-billion dollar industry and assists the federal government in overcoming regulatory requirements which are crucial to the public good. Further work will focus on the operationalization of the concept proven in this study as well as viability of the remaining modules in the proposed model for GAI-generated strategic plans.
* 11 pages, 9 figures
Via

Aug 01, 2025
Abstract:Topic modeling is a Natural Language Processing (NLP) technique that is used to identify latent themes and extract topics from text corpora by grouping similar documents based on their most significant keywords. Although widely researched in English, topic modeling remains understudied in Bengali due to its morphological complexity, lack of adequate resources and initiatives. In this contribution, a novel Graph Convolutional Network (GCN) based model called GHTM (Graph-Based Hybrid Topic Model) is proposed. This model represents input vectors of documents as nodes in the graph, which GCN uses to produce semantically rich embeddings. The embeddings are then decomposed using Non-negative Matrix Factorization (NMF) to get the topical representations of the underlying themes of the text corpus. This study compares the proposed model against a wide range of Bengali topic modeling techniques, from traditional methods such as LDA, LSA, and NMF to contemporary frameworks such as BERTopic and Top2Vec on three Bengali datasets. The experimental results demonstrate the effectiveness of the proposed model by outperforming other models in topic coherence and diversity. In addition, we introduce a novel Bengali dataset called "NCTBText" sourced from Bengali textbook materials to enrich and diversify the predominantly newspaper-centric Bengali corpora.
Via

Aug 11, 2025
Abstract:Word clouds are a common way to summarize qualitative interviews, yet traditional frequency-based methods often fail in conversational contexts: they surface filler words, ignore paraphrase, and fragment semantically related ideas. This limits their usefulness in early-stage analysis, when researchers need fast, interpretable overviews of what participant actually said. We introduce ThemeClouds, an open-source visualization tool that uses large language models (LLMs) to generate thematic, participant-weighted word clouds from dialogue transcripts. The system prompts an LLM to identify concept-level themes across a corpus and then counts how many unique participants mention each topic, yielding a visualization grounded in breadth of mention rather than raw term frequency. Researchers can customize prompts and visualization parameters, providing transparency and control. Using interviews from a user study comparing five recording-device configurations (31 participants; 155 transcripts, Whisper ASR), our approach surfaces more actionable device concerns than frequency clouds and topic-modeling baselines (e.g., LDA, BERTopic). We discuss design trade-offs for integrating LLM assistance into qualitative workflows, implications for interpretability and researcher agency, and opportunities for interactive analyses such as per-condition contrasts (``diff clouds'').
Via

Aug 11, 2025
Abstract:Digital Humanities (DH) is an interdisciplinary field that integrates computational methods with humanities scholarship to investigate innovative topics. Each academic discipline follows a unique developmental path shaped by the topics researchers investigate and the methods they employ. With the help of bibliometric analysis, most of previous studies have examined DH across multiple dimensions such as research hotspots, co-author networks, and institutional rankings. However, these studies have often been limited in their ability to provide deep insights into the current state of technological advancements and topic development in DH. As a result, their conclusions tend to remain superficial or lack interpretability in understanding how methods and topics interrelate in the field. To address this gap, this study introduced a new concept of Topic-Method Composition (TMC), which refers to a hybrid knowledge structure generated by the co-occurrence of specific research topics and the corresponding method. Especially by analyzing the interaction between TMCs, we can see more clearly the intersection and integration of digital technology and humanistic subjects in DH. Moreover, this study developed a TMC-based workflow combining bibliometric analysis, topic modeling, and network analysis to analyze the development characteristics and patterns of research disciplines. By applying this workflow to large-scale bibliometric data, it enables a detailed view of the knowledge structures, providing a tool adaptable to other fields.
* Proceedings of 2025 Digital Humanities Conference
Via

Aug 26, 2025
Abstract:Conversational analytics has been on the forefront of transformation driven by the advances in Speech and Natural Language Processing techniques. Rapid adoption of Large Language Models (LLMs) in the analytics field has taken the problems that can be automated to a new level of complexity and scale. In this paper, we introduce Theme Detection as a critical task in conversational analytics, aimed at automatically identifying and categorizing topics within conversations. This process can significantly reduce the manual effort involved in analyzing expansive dialogs, particularly in domains like customer support or sales. Unlike traditional dialog intent detection, which often relies on a fixed set of intents for downstream system logic, themes are intended as a direct, user-facing summary of the conversation's core inquiry. This distinction allows for greater flexibility in theme surface forms and user-specific customizations. We pose Controllable Conversational Theme Detection problem as a public competition track at Dialog System Technology Challenge (DSTC) 12 -- it is framed as joint clustering and theme labeling of dialog utterances, with the distinctive aspect being controllability of the resulting theme clusters' granularity achieved via the provided user preference data. We give an overview of the problem, the associated dataset and the evaluation metrics, both automatic and human. Finally, we discuss the participant teams' submissions and provide insights from those. The track materials (data and code) are openly available in the GitHub repository.
Via

Aug 25, 2025
Abstract:Benchmarks shape progress in AI research. A useful benchmark should be both difficult and realistic: questions should challenge frontier models while also reflecting real-world usage. Yet, current paradigms face a difficulty-realism tension: exam-style benchmarks are often made artificially difficult with limited real-world value, while benchmarks based on real user interaction often skew toward easy, high-frequency problems. In this work, we explore a radically different paradigm: assessing models on unsolved questions. Rather than a static benchmark scored once, we curate unsolved questions and evaluate models asynchronously over time with validator-assisted screening and community verification. We introduce UQ, a testbed of 500 challenging, diverse questions sourced from Stack Exchange, spanning topics from CS theory and math to sci-fi and history, probing capabilities including reasoning, factuality, and browsing. UQ is difficult and realistic by construction: unsolved questions are often hard and naturally arise when humans seek answers, thus solving them yields direct real-world value. Our contributions are threefold: (1) UQ-Dataset and its collection pipeline combining rule-based filters, LLM judges, and human review to ensure question quality (e.g., well-defined and difficult); (2) UQ-Validators, compound validation strategies that leverage the generator-validator gap to provide evaluation signals and pre-screen candidate solutions for human review; and (3) UQ-Platform, an open platform where experts collectively verify questions and solutions. The top model passes UQ-validation on only 15% of questions, and preliminary human verification has already identified correct answers among those that passed. UQ charts a path for evaluating frontier models on real-world, open-ended challenges, where success pushes the frontier of human knowledge. We release UQ at https://uq.stanford.edu.
* FN, KZL, and NM are project co-leads and contributed equally. Project
website: https://uq.stanford.edu
Via

Aug 25, 2025
Abstract:Traditional dialogue retrieval aims to select the most appropriate utterance or image from recent dialogue history. However, they often fail to meet users' actual needs for revisiting semantically coherent content scattered across long-form conversations. To fill this gap, we define the Fine-grained Fragment Retrieval (FFR) task, requiring models to locate query-relevant fragments, comprising both utterances and images, from multimodal long-form dialogues. As a foundation for FFR, we construct MLDR, the longest-turn multimodal dialogue retrieval dataset to date, averaging 25.45 turns per dialogue, with each naturally spanning three distinct topics. To evaluate generalization in real-world scenarios, we curate and annotate a WeChat-based test set comprising real-world multimodal dialogues with an average of 75.38 turns. Building on these resources, we explore existing generation-based Vision-Language Models (VLMs) on FFR and observe that they often retrieve incoherent utterance-image fragments. While optimized for generating responses from visual-textual inputs, these models lack explicit supervision to ensure semantic coherence within retrieved fragments. To this end, we propose F2RVLM, a generative retrieval model trained in a two-stage paradigm: (1) supervised fine-tuning to inject fragment-level retrieval knowledge, and (2) GRPO-based reinforcement learning with multi-objective rewards promoting semantic precision, relevance, and contextual coherence. To handle varying intra-fragment complexity, from locally dense to sparsely distributed, we introduce difficulty-aware curriculum sampling that ranks training instances by model-predicted difficulty and gradually exposes the model to harder samples. This boosts reasoning ability in long, multi-turn contexts. F2RVLM outperforms popular VLMs in both in-domain and real-domain settings, demonstrating superior retrieval performance.
Via
