Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Generative AI applications commonly leverage user personas as a steering mechanism for synthetic data generation, but reliance on natural language representations forces models to make unintended inferences about which attributes to emphasize, limiting precise control over outputs. We introduce PILOT (Psychological and Linguistic Output Targeting), a two-phase framework for steering large language models with structured psycholinguistic profiles. In Phase 1, PILOT translates natural language persona descriptions into multidimensional profiles with normalized scores across linguistic and psychological dimensions. In Phase 2, these profiles guide generation along measurable axes of variation. We evaluate PILOT across three state-of-the-art LLMs (Mistral Large 2, Deepseek-R1, LLaMA 3.3 70B) using 25 synthetic personas under three conditions: Natural-language Persona Steering (NPS), Schema-Based Steering (SBS), and Hybrid Persona-Schema Steering (HPS). Results demonstrate that schema-based approaches significantly reduce artificial-sounding persona repetition while improving output coherence, with silhouette scores increasing from 0.098 to 0.237 and topic purity from 0.773 to 0.957. Our analysis reveals a fundamental trade-off: SBS produces more concise outputs with higher topical consistency, while NPS offers greater lexical diversity but reduced predictability. HPS achieves a balance between these extremes, maintaining output variety while preserving structural consistency. Expert linguistic evaluation confirms that PILOT maintains high response quality across all conditions, with no statistically significant differences between steering approaches.
We develop new experimental paradigms for measuring welfare in language models. We compare verbal reports of models about their preferences with preferences expressed through behavior when navigating a virtual environment and selecting conversation topics. We also test how costs and rewards affect behavior and whether responses to an eudaimonic welfare scale - measuring states such as autonomy and purpose in life - are consistent across semantically equivalent prompts. Overall, we observed a notable degree of mutual support between our measures. The reliable correlations observed between stated preferences and behavior across conditions suggest that preference satisfaction can, in principle, serve as an empirically measurable welfare proxy in some of today's AI systems. Furthermore, our design offered an illuminating setting for qualitative observation of model behavior. Yet, the consistency between measures was more pronounced in some models and conditions than others and responses were not consistent across perturbations. Due to this, and the background uncertainty about the nature of welfare and the cognitive states (and welfare subjecthood) of language models, we are currently uncertain whether our methods successfully measure the welfare state of language models. Nevertheless, these findings highlight the feasibility of welfare measurement in language models, inviting further exploration.
Stories play a pivotal role in human communication, shaping beliefs and morals, particularly in children. As parents increasingly rely on large language models (LLMs) to craft bedtime stories, the presence of cultural and gender stereotypes in these narratives raises significant concerns. To address this issue, we present Biased Tales, a comprehensive dataset designed to analyze how biases influence protagonists' attributes and story elements in LLM-generated stories. Our analysis uncovers striking disparities. When the protagonist is described as a girl (as compared to a boy), appearance-related attributes increase by 55.26%. Stories featuring non-Western children disproportionately emphasize cultural heritage, tradition, and family themes far more than those for Western children. Our findings highlight the role of sociocultural bias in making creative AI use more equitable and diverse.
Adopting Large language models (LLMs) in organizations potentially revolutionizes our lives and work. However, they can generate off-topic, discriminating, or harmful content. This AI alignment problem often stems from misspecifications during the LLM adoption, unnoticed by the principal due to the LLM's black-box nature. While various research disciplines investigated AI alignment, they neither address the information asymmetries between organizational adopters and black-box LLM agents nor consider organizational AI adoption processes. Therefore, we propose LLM ATLAS (LLM Agency Theory-Led Alignment Strategy) a conceptual framework grounded in agency (contract) theory, to mitigate alignment problems during organizational LLM adoption. We conduct a conceptual literature analysis using the organizational LLM adoption phases and the agency theory as concepts. Our approach results in (1) providing an extended literature analysis process specific to AI alignment methods during organizational LLM adoption and (2) providing a first LLM alignment problem-solution space.
Qualitative analysis of open-ended survey responses is a commonly-used research method in the social sciences, but traditional coding approaches are often time-consuming and prone to inconsistency. Existing solutions from Natural Language Processing such as supervised classifiers, topic modeling techniques, and generative large language models have limited applicability in qualitative analysis, since they demand extensive labeled data, disrupt established qualitative workflows, and/or yield variable results. In this paper, we introduce a text embedding-based classification framework that requires only a handful of examples per category and fits well with standard qualitative workflows. When benchmarked against human analysis of a conceptual physics survey consisting of 2899 open-ended responses, our framework achieves a Cohen's Kappa ranging from 0.74 to 0.83 as compared to expert human coders in an exhaustive coding scheme. We further show how performance of this framework improves with fine-tuning of the text embedding model, and how the method can be used to audit previously-analyzed datasets. These findings demonstrate that text embedding-assisted coding can flexibly scale to thousands of responses without sacrificing interpretability, opening avenues for deductive qualitative analysis at scale.
Federated learning has the potential to unlock siloed data and distributed resources by enabling collaborative model training without sharing private data. As more complex foundational models gain widespread use, the need to expand training resources and integrate privately owned data grows as well. In this article, we explore the intersection of federated learning and foundational models, aiming to identify, categorize, and characterize technical methods that integrate the two paradigms. As a unified survey is currently unavailable, we present a literature survey structured around a novel taxonomy that follows the development life-cycle stages, along with a technical comparison of available methods. Additionally, we provide practical insights and guidelines for implementing and evolving these methods, with a specific focus on the healthcare domain as a case study, where the potential impact of federated learning and foundational models is considered significant. Our survey covers multiple intersecting topics, including but not limited to federated learning, self-supervised learning, fine-tuning, distillation, and transfer learning. Initially, we retrieved and reviewed a set of over 4,200 articles. This collection was narrowed to more than 250 thoroughly reviewed articles through inclusion criteria, featuring 42 unique methods. The methods were used to construct the taxonomy and enabled their comparison based on complexity, efficiency, and scalability. We present these results as a self-contained overview that not only summarizes the state of the field but also provides insights into the practical aspects of adopting, evolving, and integrating foundational models with federated learning.
Discharge communication is a critical yet underexplored component of patient care, where the goal shifts from diagnosis to education. While recent large language model (LLM) benchmarks emphasize in-visit diagnostic reasoning, they fail to evaluate models' ability to support patients after the visit. We introduce DischargeSim, a novel benchmark that evaluates LLMs on their ability to act as personalized discharge educators. DischargeSim simulates post-visit, multi-turn conversations between LLM-driven DoctorAgents and PatientAgents with diverse psychosocial profiles (e.g., health literacy, education, emotion). Interactions are structured across six clinically grounded discharge topics and assessed along three axes: (1) dialogue quality via automatic and LLM-as-judge evaluation, (2) personalized document generation including free-text summaries and structured AHRQ checklists, and (3) patient comprehension through a downstream multiple-choice exam. Experiments across 18 LLMs reveal significant gaps in discharge education capability, with performance varying widely across patient profiles. Notably, model size does not always yield better education outcomes, highlighting trade-offs in strategy use and content prioritization. DischargeSim offers a first step toward benchmarking LLMs in post-visit clinical education and promoting equitable, personalized patient support.
Modern smartphones are equipped with Lidar sensors providing depth-sensing capabilities. Recent works have shown that this complementary sensor allows to improve various tasks in image processing, including deblurring. However, there is a current lack of datasets with realistic blurred images and paired mobile Lidar depth maps to further study the topic. At the same time, there is also a lack of blind zero-shot methods that can deblur a real image using the depth guidance without requiring extensive training sets of paired data. In this paper, we propose an image deblurring method based on denoising diffusion models that can leverage the Lidar depth guidance and does not require training data with paired Lidar depth maps. We also present the first dataset with real blurred images with corresponding Lidar depth maps and sharp ground truth images, acquired with an Apple iPhone 15 Pro, for the purpose of studying Lidar-guided deblurring. Experimental results on this novel dataset show that Lidar guidance is effective and the proposed method outperforms state-of-the-art deblurring methods in terms of perceptual quality.
Neurosymbolic (NeSy) frameworks combine neural representations and learning with symbolic representations and reasoning. Combining the reasoning capacities, explainability, and interpretability of symbolic processing with the flexibility and power of neural computing allows us to solve complex problems with more reliability while being data-efficient. However, this recently growing topic poses a challenge to developers with its learning curve, lack of user-friendly tools, libraries, and unifying frameworks. In this paper, we characterize the technical facets of existing NeSy frameworks, such as the symbolic representation language, integration with neural models, and the underlying algorithms. A majority of the NeSy research focuses on algorithms instead of providing generic frameworks for declarative problem specification to leverage problem solving. To highlight the key aspects of Neurosymbolic modeling, we showcase three generic NeSy frameworks - \textit{DeepProbLog}, \textit{Scallop}, and \textit{DomiKnowS}. We identify the challenges within each facet that lay the foundation for identifying the expressivity of each framework in solving a variety of problems. Building on this foundation, we aim to spark transformative action and encourage the community to rethink this problem in novel ways.
Generative Artificial Intelligence is emerging as an important technology, promising to be transformative in many areas. At the same time, generative AI techniques are based on sampling from probabilistic models, and by default, they come with no guarantees about correctness, safety, fairness, or other properties. Statistical methods offer a promising potential approach to improve the reliability of generative AI techniques. In addition, statistical methods are also promising for improving the quality and efficiency of AI evaluation, as well as for designing interventions and experiments in AI. In this paper, we review some of the existing work on these topics, explaining both the general statistical techniques used, as well as their applications to generative AI. We also discuss limitations and potential future directions.