Sign language recognition is a computer vision and natural language processing task that involves automatically recognizing and translating sign language gestures into written or spoken language. The goal of sign language recognition is to develop algorithms that can understand and interpret sign language, enabling people who use sign language as their primary mode of communication to communicate more easily with non-signers.
The hearing-impaired community in India deserves the access to tools that help them communicate, however, there is limited known technology solutions that make use of Indian Sign Language (ISL) at present. Even though there are many ISL users, ISL cannot access social and education arenas because there is not yet an efficient technology to convert the ISL signal into speech or text. We initiated this initiative owing to the rising demand for products and technologies that are inclusive and help ISL, filling the gap of communication for the ones with hearing disability. Our goal is to build an reliable sign language recognition system with the help of Convolutional Neural Networks (CNN) to . By expanding communication access, we aspire toward better educational opportunities and a more inclusive society for hearing impaired people in India.
Hand gesture recognition has become an important research area, driven by the growing demand for human-computer interaction in fields such as sign language recognition, virtual and augmented reality, and robotics. Despite the rapid growth of the field, there are few surveys that comprehensively cover recent research developments, available solutions, and benchmark datasets. This survey addresses this gap by examining the latest advancements in hand gesture and 3D hand pose recognition from various types of camera input data including RGB images, depth images, and videos from monocular or multiview cameras, examining the differing methodological requirements of each approach. Furthermore, an overview of widely used datasets is provided, detailing their main characteristics and application domains. Finally, open challenges such as achieving robust recognition in real-world environments, handling occlusions, ensuring generalization across diverse users, and addressing computational efficiency for real-time applications are highlighted to guide future research directions. By synthesizing the objectives, methodologies, and applications of recent studies, this survey offers valuable insights into current trends, challenges, and opportunities for future research in human hand gesture recognition.




Explainable disease diagnosis, which leverages patient information (e.g., signs and symptoms) and computational models to generate probable diagnoses and reasonings, offers clear clinical values. However, when clinical notes encompass insufficient evidence for a definite diagnosis, such as the absence of definitive symptoms, diagnostic uncertainty usually arises, increasing the risk of misdiagnosis and adverse outcomes. Although explicitly identifying and explaining diagnostic uncertainties is essential for trustworthy diagnostic systems, it remains under-explored. To fill this gap, we introduce ConfiDx, an uncertainty-aware large language model (LLM) created by fine-tuning open-source LLMs with diagnostic criteria. We formalized the task and assembled richly annotated datasets that capture varying degrees of diagnostic ambiguity. Evaluating ConfiDx on real-world datasets demonstrated that it excelled in identifying diagnostic uncertainties, achieving superior diagnostic performance, and generating trustworthy explanations for diagnoses and uncertainties. To our knowledge, this is the first study to jointly address diagnostic uncertainty recognition and explanation, substantially enhancing the reliability of automatic diagnostic systems.
Autonomous vehicles (AVs) require reliable traffic sign recognition and robust lane detection capabilities to ensure safe navigation in complex and dynamic environments. This paper introduces an integrated approach combining advanced deep learning techniques and Multimodal Large Language Models (MLLMs) for comprehensive road perception. For traffic sign recognition, we systematically evaluate ResNet-50, YOLOv8, and RT-DETR, achieving state-of-the-art performance of 99.8% with ResNet-50, 98.0% accuracy with YOLOv8, and achieved 96.6% accuracy in RT-DETR despite its higher computational complexity. For lane detection, we propose a CNN-based segmentation method enhanced by polynomial curve fitting, which delivers high accuracy under favorable conditions. Furthermore, we introduce a lightweight, Multimodal, LLM-based framework that directly undergoes instruction tuning using small yet diverse datasets, eliminating the need for initial pretraining. This framework effectively handles various lane types, complex intersections, and merging zones, significantly enhancing lane detection reliability by reasoning under adverse conditions. Despite constraints in available training resources, our multimodal approach demonstrates advanced reasoning capabilities, achieving a Frame Overall Accuracy (FRM) of 53.87%, a Question Overall Accuracy (QNS) of 82.83%, lane detection accuracies of 99.6% in clear conditions and 93.0% at night, and robust performance in reasoning about lane invisibility due to rain (88.4%) or road degradation (95.6%). The proposed comprehensive framework markedly enhances AV perception reliability, thus contributing significantly to safer autonomous driving across diverse and challenging road scenarios.
Generative AI, powered by large language models (LLMs), has revolutionized applications across text, audio, images, and video. This study focuses on developing and evaluating encoder-decoder architectures for the American Sign Language (ASL) image dataset, consisting of 87,000 images across 29 hand sign classes. Three approaches were compared: Feedforward Autoencoders, Convolutional Autoencoders, and Diffusion Autoencoders. The Diffusion Autoencoder outperformed the others, achieving the lowest mean squared error (MSE) and highest Mean Opinion Score (MOS) due to its probabilistic noise modeling and iterative denoising capabilities. The Convolutional Autoencoder demonstrated effective spatial feature extraction but lacked the robustness of the diffusion process, while the Feedforward Autoencoder served as a baseline with limitations in handling complex image data. Objective and subjective evaluations confirmed the superiority of the Diffusion Autoencoder for high-fidelity image reconstruction, emphasizing its potential in multimodal AI applications such as sign language recognition and generation. This work provides critical insights into designing robust encoder-decoder systems to advance multimodal AI capabilities.
Although sign language recognition aids non-hearing-impaired understanding, many hearing-impaired individuals still rely on sign language alone due to limited literacy, underscoring the need for advanced sign language production and translation (SLP and SLT) systems. In the field of sign language production, the lack of adequate models and datasets restricts practical applications. Existing models face challenges in production accuracy and pose control, making it difficult to provide fluent sign language expressions across diverse scenarios. Additionally, data resources are scarce, particularly high-quality datasets with complete sign vocabulary and pose annotations. To address these issues, we introduce CNText2Sign and CNSign, comprehensive datasets to benchmark SLP and SLT, respectively, with CNText2Sign covering gloss and landmark mappings for SLP, and CNSign providing extensive video-to-text data for SLT. To improve the accuracy and applicability of sign language systems, we propose the AuraLLM and SignMST-C models. AuraLLM, incorporating LoRA and RAG techniques, achieves a BLEU-4 score of 50.41 on the CNText2Sign dataset, enabling precise control over gesture semantics and motion. SignMST-C employs self-supervised rapid motion video pretraining, achieving a BLEU-4 score of 31.03/32.08 on the PHOENIX2014-T benchmark, setting a new state-of-the-art. These models establish robust baselines for the datasets released for their respective tasks.
Recent advancements in Large Language Models (LLMs) have generated growing interest in their structured reasoning capabilities, particularly in tasks involving abstraction and pattern recognition. The Abstraction and Reasoning Corpus (ARC) benchmark plays a crucial role in evaluating these capabilities by testing how well AI models generalize to novel problems. While GPT-4o demonstrates strong performance by solving all ARC tasks under zero-noise conditions, other models like DeepSeek R1 and LLaMA 3.2 fail to solve any, suggesting limitations in their ability to reason beyond simple pattern matching. To explore this gap, we systematically evaluate these models across different noise levels and temperature settings. Our results reveal that the introduction of noise consistently impairs model performance, regardless of architecture. This decline highlights a shared vulnerability: current LLMs, despite showing signs of abstract reasoning, remain highly sensitive to input perturbations. Such fragility raises concerns about their real-world applicability, where noise and uncertainty are common. By comparing how different model architectures respond to these challenges, we offer insights into the structural weaknesses of modern LLMs in reasoning tasks. This work underscores the need for developing more robust and adaptable AI systems capable of handling the ambiguity and variability inherent in real-world scenarios. Our findings aim to guide future research toward enhancing model generalization, robustness, and alignment with human-like cognitive flexibility.
Sign languages are the language of hearing-impaired people who use visuals like the hand, facial, and body movements for communication. There are different signs and gestures representing alphabets, words, and phrases. Nowadays approximately 300 sign languages are being practiced worldwide such as American Sign Language (ASL), Chinese Sign Language (CSL), Indian Sign Language (ISL), and many more. Sign languages are dependent on the vocal language of a place. Unlike vocal or spoken languages, there are no helping words in sign language like is, am, are, was, were, will, be, etc. As only a limited population is well-versed in sign language, this lack of familiarity of sign language hinders hearing-impaired people from communicating freely and easily with everyone. This issue can be addressed by a sign language recognition (SLR) system which has the capability to translate the sign language into vocal language. In this paper, a continuous SLR system is proposed using a deep learning model employing Long Short-Term Memory (LSTM), trained and tested on an ISL primary dataset. This dataset is created using MediaPipe Holistic pipeline for tracking face, hand, and body movements and collecting landmarks. The system recognizes the signs and gestures in real-time with 88.23% accuracy.




Isolated Sign Language Recognition (ISLR) focuses on identifying individual sign language glosses. Considering the diversity of sign languages across geographical regions, developing region-specific ISLR datasets is crucial for supporting communication and research. Auslan, as a sign language specific to Australia, still lacks a dedicated large-scale word-level dataset for the ISLR task. To fill this gap, we curate \underline{\textbf{the first}} large-scale Multi-view Multi-modal Word-Level Australian Sign Language recognition dataset, dubbed MM-WLAuslan. Compared to other publicly available datasets, MM-WLAuslan exhibits three significant advantages: (1) the largest amount of data, (2) the most extensive vocabulary, and (3) the most diverse of multi-modal camera views. Specifically, we record 282K+ sign videos covering 3,215 commonly used Auslan glosses presented by 73 signers in a studio environment. Moreover, our filming system includes two different types of cameras, i.e., three Kinect-V2 cameras and a RealSense camera. We position cameras hemispherically around the front half of the model and simultaneously record videos using all four cameras. Furthermore, we benchmark results with state-of-the-art methods for various multi-modal ISLR settings on MM-WLAuslan, including multi-view, cross-camera, and cross-view. Experiment results indicate that MM-WLAuslan is a challenging ISLR dataset, and we hope this dataset will contribute to the development of Auslan and the advancement of sign languages worldwide. All datasets and benchmarks are available at MM-WLAuslan.
Sign language processing technology development relies on extensive and reliable datasets, instructions, and ethical guidelines. We present a comprehensive Azerbaijani Sign Language Dataset (AzSLD) collected from diverse sign language users and linguistic parameters to facilitate advancements in sign recognition and translation systems and support the local sign language community. The dataset was created within the framework of a vision-based AzSL translation project. This study introduces the dataset as a summary of the fingerspelling alphabet and sentence- and word-level sign language datasets. The dataset was collected from signers of different ages, genders, and signing styles, with videos recorded from two camera angles to capture each sign in full detail. This approach ensures robust training and evaluation of gesture recognition models. AzSLD contains 30,000 videos, each carefully annotated with accurate sign labels and corresponding linguistic translations. The dataset is accompanied by technical documentation and source code to facilitate its use in training and testing. This dataset offers a valuable resource of labeled data for researchers and developers working on sign language recognition, translation, or synthesis. Ethical guidelines were strictly followed throughout the project, with all participants providing informed consent for collecting, publishing, and using the data.