Speech editing achieves semantic inversion by performing fine-grained segment-level manipulation on original utterances, while preserving global perceptual naturalness. Existing detection studies mainly focus on manually edited speech with explicit splicing artifacts, and therefore struggle to cope with emerging end-to-end neural speech editing techniques that generate seamless acoustic transitions. To address this challenge, we first construct a large-scale bilingual dataset, AiEdit, which leverages large language models to drive precise semantic tampering logic and employs multiple advanced neural speech editing methods for data synthesis, thereby filling the gap of high-quality speech editing datasets. Building upon this foundation, we propose PELM (Prior-Enhanced Audio Large Language Model), the first large-model framework that unifies speech editing detection and content localization by formulating them as an audio question answering task. To mitigate the inherent forgery bias and semantic-priority bias observed in existing audio large models, PELM incorporates word-level probability priors to provide explicit acoustic cues, and further designs a centroid-aggregation-based acoustic consistency perception loss to explicitly enforce the modeling of subtle local distribution anomalies. Extensive experimental results demonstrate that PELM significantly outperforms state-of-the-art methods on both the HumanEdit and AiEdit datasets, achieving equal error rates (EER) of 0.57\% and 9.28\% (localization), respectively.
Evasion attacks pose significant threats to AI systems, exploiting vulnerabilities in machine learning models to bypass detection mechanisms. The widespread use of voice data, including deepfakes, in promising future industries is currently hindered by insufficient legal frameworks. Adversarial attack methods have emerged as the most effective countermeasure against the indiscriminate use of such data. This research introduces masked energy perturbation (MEP), a novel approach using power spectrum for energy masking of original voice data. MEP applies masking to small energy regions in the frequency domain before generating adversarial perturbations, targeting areas less noticeable to the human auditory model. The study primarily employs advanced speaker recognition models, including ECAPA-TDNN and ResNet34, which have shown remarkable performance in speaker verification tasks. The proposed MEP method demonstrated strong performance in both audio quality and evasion effectiveness. The energy masking approach effectively minimizes the perceptual evaluation of speech quality (PESQ) degradation, indicating that minimal perceptual distortion occurs to the human listener despite the adversarial perturbations. Specifically, in the PESQ evaluation, the relative performance of the MEP method was 26.68% when compared to the fast gradient sign method (FGSM) and iterative FGSM.
Scaling spoken language modeling requires speech tokens that are both efficient and universal. Recent work has proposed syllables as promising speech tokens at low temporal resolution, but existing models are constrained to English and fail to capture sufficient acoustic detail. To address this gap, we present Sylber 2.0, a self-supervised framework for coding speech at the syllable level that enables efficient temporal compression and high-fidelity reconstruction. Sylber 2.0 achieves a very low token frequency around 5 Hz, while retaining both linguistic and acoustic detail across multiple languages and expressive styles. Experiments show that it performs on par with previous models operating on high-frequency baselines. Furthermore, Sylber 2.0 enables efficient TTS modeling which can generate speech with competitive intelligibility and quality with SOTA models using only 72M parameters. Moreover, the universality of Sylber 2.0 provides more effective features for low resource ASR than previous speech coding frameworks. In sum, we establish an effective syllable-level abstraction for general spoken language.
We propose a brain-informed speech separation method for cochlear implants (CIs) that uses electroencephalography (EEG)-derived attention cues to guide enhancement toward the attended speaker. An attention-guided network fuses audio mixtures with EEG features through a lightweight fusion layer, producing attended-source electrodograms for CI stimulation while resolving the label-permutation ambiguity of audio-only separators. Robustness to degraded attention cues is improved with a mixed curriculum that varies cue quality during training, yielding stable gains even when EEG-speech correlation is moderate. In multi-talker conditions, the model achieves higher signal-to-interference ratio improvements than an audio-only electrodogram baseline while remaining slightly smaller (167k vs. 171k parameters). With 2 ms algorithmic latency and comparable cost, the approach highlights the promise of coupling auditory and neural cues for cognitively adaptive CI processing.
The growing prevalence of neurological disorders associated with dysarthria motivates the need for automated intelligibility assessment methods that are applicalbe across languages. However, most existing approaches are either limited to a single language or fail to capture language-specific factors shaping intelligibility. We present a multilingual phoneme-production assessment framework that integrates universal phone recognition with language-specific phoneme interpretation using contrastive phonological feature distances for phone-to-phoneme mapping and sequence alignment. The framework yields three metrics: phoneme error rate (PER), phonological feature error rate (PFER), and a newly proposed alignment-free measure, phoneme coverage (PhonCov). Analysis on English, Spanish, Italian, and Tamil show that PER benefits from the combination of mapping and alignment, PFER from alignment alone, and PhonCov from mapping. Further analyses demonstrate that the proposed framework captures clinically meaningful patterns of intelligibility degradation consistent with established observations of dysarthric speech.
Recent advances in reconstructing speech envelopes from Electroencephalogram (EEG) signals have enabled continuous auditory attention decoding (AAD) in multi-speaker environments. Most Deep Neural Network (DNN)-based envelope reconstruction models are trained to maximize the Pearson correlation coefficients (PCC) between the attended envelope and the reconstructed envelope (attended PCC). While the difference between the attended PCC and the unattended PCC plays an essential role in auditory attention decoding, existing methods often focus on maximizing the attended PCC. We therefore propose a contrastive PCC loss which represents the difference between the attended PCC and the unattended PCC. The proposed approach is evaluated on three public EEG AAD datasets using four DNN architectures. Across many settings, the proposed objective improves envelope separability and AAD accuracy, while also revealing dataset- and architecture-dependent failure cases.
Full-duplex voice interaction is crucial for natural human computer interaction. We present a framework that decomposes complex dialogue into minimal conversational units, enabling the system to process each unit independently and predict when to transit to the next. This framework is instantiated as a semi-cascaded full-duplex dialogue system built around a multimodal large language model, supported by auxiliary modules such as voice activity detection (VAD) and text-to-speech (TTS) synthesis. The resulting system operates in a train-free, plug-and-play manner. Experiments on the HumDial dataset demonstrate the effectiveness of our framework, which ranks second among all teams on the test set of the Human-like Spoken Dialogue Systems Challenge (Track 2: Full-Duplex Interaction). Code is available at the GitHub repository https://github.com/yu-haoyuan/fd-badcat.
Self-supervised learning (SSL) models have achieved impressive results across many speech tasks, yet child automatic speech recognition (ASR) remains challenging due to limited data and pretraining domain mismatch. Fine-tuning SSL models on child speech induces shifts in the representation space. We hypothesize that delta SSL embeddings, defined as the differences between embeddings from a finetuned model and those from its pretrained counterpart, encode task-specific information that complements finetuned features from another SSL model. We evaluate multiple fusion strategies on the MyST childrens corpus using different models. Results show that delta embedding fusion with WavLM yields up to a 10 percent relative WER reduction for HuBERT and a 4.4 percent reduction for W2V2, compared to finetuned embedding fusion. Notably, fusing WavLM with delta W2V2 embeddings achieves a WER of 9.64, setting a new state of the art among SSL models on the MyST corpus. These findings demonstrate the effectiveness of delta embeddings and highlight feature fusion as a promising direction for advancing child ASR.
LLM-based automatic speech recognition (ASR), a well-established approach, connects speech foundation models to large language models (LLMs) through a speech-to-LLM projector, yielding promising results. A common design choice in these architectures is the use of a fixed, manually defined prompt during both training and inference. This setup not only enables applicability across a range of practical scenarios, but also helps maximize model performance. However, the impact of prompt design remains underexplored. This paper presents a comprehensive analysis of commonly used prompts across diverse datasets, showing that prompt choice significantly affects ASR performance and introduces instability, with no single prompt performing best across all cases. Inspired by the speech-to-LLM projector, we propose a prompt projector module, a simple, model-agnostic extension that learns to project prompt embeddings to more effective regions of the LLM input space, without modifying the underlying LLM-based ASR model. Experiments on four datasets show that the addition of a prompt projector consistently improves performance, reduces variability, and outperforms the best manually selected prompts.
Single-word Automatic Speech Recognition (ASR) is a challenging task due to the lack of linguistic context and sensitivity to noise, pronunciation variation, and channel artifacts, especially in low-resource, communication-critical domains such as healthcare and emergency response. This paper reviews recent deep learning approaches and proposes a modular framework for robust single-word detection. The system combines denoising and normalization with a hybrid ASR front end (Whisper + Vosk) and a verification layer designed to handle out-of-vocabulary words and degraded audio. The verification layer supports multiple matching strategies, including embedding similarity, edit distance, and LLM-based matching with optional contextual guidance. We evaluate the framework on the Google Speech Commands dataset and a curated real-world dataset collected from telephony and messaging platforms under bandwidth-limited conditions. Results show that while the hybrid ASR front end performs well on clean audio, the verification layer significantly improves accuracy on noisy and compressed channels. Context-guided and LLM-based matching yield the largest gains, demonstrating that lightweight verification and context mechanisms can substantially improve single-word ASR robustness without sacrificing latency required for real-time telephony applications.