Few forces rival fear in their ability to mobilize societies, distort communication, and reshape collective behavior. In computational linguistics, fear is primarily studied as an emotion, but not as a distinct form of speech. Fear speech content is widespread and growing, and often outperforms hate-speech content in reach and engagement because it appears "civiler" and evades moderation. Yet the computational study of fear speech remains fragmented and under-resourced. This can be understood by recognizing that fear speech is a phenomenon shaped by contributions from multiple disciplines. In this paper, we bridge cross-disciplinary perspectives by comparing theories of fear from Psychology, Political science, Communication science, and Linguistics. Building on this, we review existing definitions. We follow up with a survey of datasets from related research areas and propose a taxonomy that consolidates different dimensions of fear for studying fear speech. By reviewing current datasets and defining core concepts, our work offers both theoretical and practical guidance for creating datasets and advancing fear speech research.
Direct Speech-to-Speech Translation (S2ST) has gained increasing attention for its ability to translate speech from one language to another, while reducing error propagation and latency inherent in traditional cascaded pipelines. However, existing direct S2ST systems continue to face notable challenges, including instability in semantic-acoustic alignment when parallel speech data is scarce, difficulty in preserving speaker identity, and limited multilingual scalability. In this work, we introduce DS2ST-LM, a scalable, single-stage direct S2ST framework leveraging a multilingual Large Language Model (LLM). The architecture integrates a Whisper speech encoder, a learnable projection module, a Qwen2-0.5B LLM, and a timbre-controlled vocoder. We construct GigaS2S-1000, a 1000-hour bilingual corpus by extending the GigaST dataset with high-fidelity synthetic target speech, and show that this synthetic data alleviates data scarcity to some extent. We investigate two semantic token generation strategies: speech-derived S3 tokens and text-derived tokens generated by a pre-trained LLM, and analyze their impact on training stability and semantic consistency. We further evaluate three projection architectures (Linear, Conv1D-Linear, and Q-Former) and observe that while higher-capacity projectors converge faster, the simple Linear projector achieves higher performance. Extensive experiments demonstrate that DS2ST-LM outperforms traditional cascaded and ST (Qwen-Audio) + TTS baselines across both lexical (BLEU, METEOR) and semantic (BLEURT, COMET) metrics, while extending to multiple language pairs, including French, Spanish, German, Hindi, Bengali, and Urdu. Furthermore, we incorporate timbre-aware speech synthesis to preserve speaker information, enabling DS2ST-LM to surpass prior direct S2ST systems in both speaker similarity and perceptual naturalness.
This study evaluates AV-HuBERT's perceptual bio-fidelity by benchmarking its response to incongruent audiovisual stimuli (McGurk effect) against human observers (N=44). Results reveal a striking quantitative isomorphism: AI and humans exhibited nearly identical auditory dominance rates (32.0% vs. 31.8%), suggesting the model captures biological thresholds for auditory resistance. However, AV-HuBERT showed a deterministic bias toward phonetic fusion (68.0%), significantly exceeding human rates (47.7%). While humans displayed perceptual stochasticity and diverse error profiles, the model remained strictly categorical. Findings suggest that current self-supervised architectures mimic multisensory outcomes but lack the neural variability inherent to human speech perception.
In this report, we present the Qwen3-TTS series, a family of advanced multilingual, controllable, robust, and streaming text-to-speech models. Qwen3-TTS supports state-of-the-art 3-second voice cloning and description-based control, allowing both the creation of entirely novel voices and fine-grained manipulation over the output speech. Trained on over 5 million hours of speech data spanning 10 languages, Qwen3-TTS adopts a dual-track LM architecture for real-time synthesis, coupled with two speech tokenizers: 1) Qwen-TTS-Tokenizer-25Hz is a single-codebook codec emphasizing semantic content, which offers seamlessly integration with Qwen-Audio and enables streaming waveform reconstruction via a block-wise DiT. 2) Qwen-TTS-Tokenizer-12Hz achieves extreme bitrate reduction and ultra-low-latency streaming, enabling immediate first-packet emission ($97\,\mathrm{ms}$) through its 12.5 Hz, 16-layer multi-codebook design and a lightweight causal ConvNet. Extensive experiments indicate state-of-the-art performance across diverse objective and subjective benchmark (e.g., TTS multilingual test set, InstructTTSEval, and our long speech test set). To facilitate community research and development, we release both tokenizers and models under the Apache 2.0 license.
Real-time automatic speech recognition systems are increasingly integrated into interactive applications, from voice assistants to live transcription services. However, scaling these systems to support multiple concurrent clients while maintaining low latency and high accuracy remains a major challenge. In this work, we present SWIM, a novel real-time ASR system built on top of OpenAI's Whisper model that enables true model-level parallelization for scalable, multilingual transcription. SWIM supports multiple concurrent audio streams without modifying the underlying model. It introduces a buffer merging strategy that maintains transcription fidelity while ensuring efficient resource usage. We evaluate SWIM in multi-client settings -- scaling up to 20 concurrent users -- and show that it delivers accurate real-time transcriptions in English, Italian, and Spanish, while maintaining low latency and high throughput. While Whisper-Streaming achieves a word error rate of approximately 8.2% with an average delay of approximately 3.4 s in a single-client, English-only setting, SWIM extends this capability to multilingual, multi-client environments. It maintains comparable accuracy with significantly lower delay -- around 2.4 s with 5 clients -- and continues to scale effectively up to 20 concurrent clients without degrading transcription quality and increasing overall throughput. Our approach advances scalable ASR by improving robustness and efficiency in dynamic, multi-user environments.
The development of robust, multilingual speaker recognition systems is hindered by a lack of large-scale, publicly available and multilingual datasets, particularly for the read-speech style crucial for applications like anti-spoofing. To address this gap, we introduce the TidyVoice dataset derived from the Mozilla Common Voice corpus after mitigating its inherent speaker heterogeneity within the provided client IDs. TidyVoice currently contains training and test data from over 212,000 monolingual speakers (Tidy-M) and around 4,500 multilingual speakers (Tidy-X) from which we derive two distinct conditions. The Tidy-M condition contains target and non-target trials from monolingual speakers across 81 languages. The Tidy-X condition contains target and non-target trials from multilingual speakers in both same- and cross-language trials. We employ two architectures of ResNet models, achieving a 0.35% EER by fine-tuning on our comprehensive Tidy-M partition. Moreover, we show that this fine-tuning enhances the model's generalization, improving performance on unseen conversational interview data from the CANDOR corpus. The complete dataset, evaluation trials, and our models are publicly released to provide a new resource for the community.
Non-invasive decoding of imagined speech remains challenging due to weak, distributed signals and limited labeled data. Our paper introduces an image-based approach that transforms magnetoencephalography (MEG) signals into time-frequency representations compatible with pretrained vision models. MEG data from 21 participants performing imagined speech tasks were projected into three spatial scalogram mixtures via a learnable sensor-space convolution, producing compact image-like inputs for ImageNet-pretrained vision architectures. These models outperformed classical and non-pretrained models, achieving up to 90.4% balanced accuracy for imagery vs. silence, 81.0% vs. silent reading, and 60.6% for vowel decoding. Cross-subject evaluation confirmed that pretrained models capture shared neural representations, and temporal analyses localized discriminative information to imagery-locked intervals. These findings show that pretrained vision models applied to image-based MEG representations can effectively capture the structure of imagined speech in non-invasive neural signals.
While modern Text-to-Speech (TTS) systems achieve high fidelity for read-style speech, they struggle to generate Autonomous Sensory Meridian Response (ASMR), a specialized, low-intensity speech style essential for relaxation. The inherent challenges include ASMR's subtle, often unvoiced characteristics and the demand for zero-shot speaker adaptation. In this paper, we introduce DeepASMR, the first framework designed for zero-shot ASMR generation. We demonstrate that a single short snippet of a speaker's ordinary, read-style speech is sufficient to synthesize high-fidelity ASMR in their voice, eliminating the need for whispered training data from the target speaker. Methodologically, we first identify that discrete speech tokens provide a soft factorization of ASMR style from speaker timbre. Leveraging this insight, we propose a two-stage pipeline incorporating a Large Language Model (LLM) for content-style encoding and a flow-matching acoustic decoder for timbre reconstruction. Furthermore, we contribute DeepASMR-DB, a comprehensive 670-hour English-Chinese multi-speaker ASMR speech corpus, and introduce a novel evaluation protocol integrating objective metrics, human listening tests, LLM-based scoring and unvoiced speech analysis. Extensive experiments confirm that DeepASMR achieves state-of-the-art naturalness and style fidelity in ASMR generation for anyone of any voice, while maintaining competitive performance on normal speech synthesis.
This technical report describes our submission to the ICME 2025 audio encoder challenge. Our submitted system is built on BEATs, a masked speech token prediction based audio encoder. We extend the BEATs model using 74,000 hours of data derived from various speech, music, and sound corpora and scale its architecture upto 300 million parameters. We experiment with speech-heavy and balanced pre-training mixtures to study the impact of different domains on final performance. Our submitted system consists of an ensemble of the Dasheng 1.2 billion model with two custom scaled-up BEATs models trained on the aforementioned pre-training data mixtures. We also propose a simple ensembling technique that retains the best capabilities of constituent models and surpasses both the baseline and Dasheng 1.2B. For open science, we publicly release our trained checkpoints via huggingface at https://huggingface.co/shikhar7ssu/OpenBEATs-ICME-SOUND and https://huggingface.co/shikhar7ssu/OpenBEATs-ICME.
Latest advances in deep spatial filtering for Ambisonics demonstrate strong performance in stationary multi-speaker scenarios by rotating the sound field toward a target speaker prior to multi-channel enhancement. For applicability in dynamic acoustic conditions with moving speakers, we propose to automate this rotary steering using an interleaved tracking algorithm conditioned on the target's initial direction. However, for nearby or crossing speakers, robust tracking becomes difficult and spatial cues less effective for enhancement. By incorporating the processed recording as additional guide into both algorithms, our novel joint autoregressive framework leverages temporal-spectral correlations of speech to resolve spatially challenging speaker constellations. Consequently, our proposed method significantly improves tracking and enhancement of closely spaced speakers, consistently outperforming comparable non-autoregressive methods on a synthetic dataset. Real-world recordings complement these findings in complex scenarios with multiple speaker crossings and varying speaker-to-array distances.