Developing a good speaker embedding has received tremendous interest in the speech community, with representations such as i-vector and d-vector demonstrating remarkable performance across various tasks. Despite their widespread adoption, a fundamental question remains largely unexplored: what properties are actually encoded in these embeddings? To address this gap, we conduct a comprehensive analysis of three prominent speaker embedding methods: i-vector, d-vector, and RNN/LSTM-based sequence-vector (s-vector). Through carefully designed classification tasks, we systematically investigate their encoding capabilities across multiple dimensions, including speaker identity, gender, speaking rate, text content, word order, and channel information. Our analysis reveals distinct strengths and limitations of each embedding type: i-vector excels at speaker discrimination but encodes limited sequential information; s-vector captures text content and word order effectively but struggles with speaker identity; d-vector shows balanced performance but loses sequential information through averaging. Based on these insights, we propose a novel multi-task learning framework that integrates i-vector and s-vector, resulting in a new speaker embedding (i-s-vector) that combines their complementary advantages. Experimental results on RSR2015 demonstrate that the proposed i-s-vector achieves more than 50% EER reduction compared to the i-vector baseline on content mismatch trials, validating the effectiveness of our approach.
Speech Emotion Recognition (SER) systems often degrade in performance when exposed to the unpredictable acoustic interference found in real-world environments. Additionally, the opacity of deep learning models hinders their adoption in trust-sensitive applications. To bridge this gap, we propose a Hybrid Transformer-CNN framework that unifies the contextual modeling of Wav2Vec 2.0 with the spectral stability of 1D-Convolutional Neural Networks. Our dual-stream architecture processes raw waveforms to capture long-range temporal dependencies while simultaneously extracting noise-resistant spectral features (MFCC, ZCR, RMSE) via a custom Attentive Temporal Pooling mechanism. We conducted extensive validation across four diverse benchmark datasets: RAVDESS, TESS, SAVEE, and CREMA-D. To rigorously test robustness, we subjected the model to non-stationary acoustic interference using real-world noise profiles from the SAS-KIIT dataset. The proposed framework demonstrates superior generalization and state-of-the-art accuracy across all datasets, significantly outperforming single-branch baselines under realistic environmental interference. Furthermore, we address the ``black-box" problem by integrating SHAP and Score-CAM into the evaluation pipeline. These tools provide granular visual explanations, revealing how the model strategically shifts attention between temporal and spectral cues to maintain reliability in the presence of complex environmental noise.
Recently, the Large Language Model-based Phoneme-to-Grapheme (LLM-P2G) method has shown excellent performance in speech recognition tasks and has become a feasible direction to replace the traditional WFST decoding method. This framework takes into account both recognition accuracy and system scalability through two-stage modeling of phoneme prediction and text generation. However, the existing LLM-P2G adopts the Top-K Marginalized (TKM) training strategy, and its candidate phoneme sequences rely on beam search generation, which has problems such as insufficient path diversity, low training efficiency, and high resource overhead. To this end, this paper proposes a sampling marginalized training strategy (Sampling-K Marginalized, SKM), which replaces beam search with random sampling to generate candidate paths, improving marginalized modeling and training efficiency. Experiments were conducted on Polish and German datasets, and the results showed that SKM further improved the model learning convergence speed and recognition performance while maintaining the complexity of the model. Comparative experiments with a speech recognition method that uses a projector combined with a large language model (SpeechLLM) also show that the SKM-driven LLM-P2G has more advantages in recognition accuracy and structural simplicity. The study verified the practical value and application potential of this method in cross-language speech recognition systems.
This paper presents an applied AI pipeline for realtime geolocation from noisy microblog streams, unifying statistical hashtag segmentation, part-of-speech-driven proper-noun detection, dependency parsing around disaster lexicons, lightweight named-entity recognition, and gazetteer-grounded disambiguation to infer locations directly from text rather than sparse geotags. The approach operationalizes information extraction under streaming constraints, emphasizing low-latency NLP components and efficient validation against geographic knowledge bases to support situational awareness during emergencies. In head to head comparisons with widely used NER toolkits, the system attains strong F1 while being engineered for orders-of-magnitude faster throughput, enabling deployment in live crisis informatics settings. A production map interface demonstrates end-to-end AI functionality ingest, inference, and visualization--surfacing locational signals at scale for floods, outbreaks, and other fastmoving events. By prioritizing robustness to informal text and streaming efficiency, GeoSense-AI illustrates how domain-tuned NLP and knowledge grounding can elevate emergency response beyond conventional geo-tag reliance.
General audio source separation is a key capability for multimodal AI systems that can perceive and reason about sound. Despite substantial progress in recent years, existing separation models are either domain-specific, designed for fixed categories such as speech or music, or limited in controllability, supporting only a single prompting modality such as text. In this work, we present SAM Audio, a foundation model for general audio separation that unifies text, visual, and temporal span prompting within a single framework. Built on a diffusion transformer architecture, SAM Audio is trained with flow matching on large-scale audio data spanning speech, music, and general sounds, and can flexibly separate target sources described by language, visual masks, or temporal spans. The model achieves state-of-the-art performance across a diverse suite of benchmarks, including general sound, speech, music, and musical instrument separation in both in-the-wild and professionally produced audios, substantially outperforming prior general-purpose and specialized systems. Furthermore, we introduce a new real-world separation benchmark with human-labeled multimodal prompts and a reference-free evaluation model that correlates strongly with human judgment.
Voice-based human-machine interaction is a primary modality for accessing intelligent systems, yet individuals with dysarthria face systematic exclusion due to recognition performance gaps. Whilst automatic speech recognition (ASR) achieves word error rates (WER) below 5% on typical speech, performance degrades dramatically for dysarthric speakers. Multimodal large language models (MLLMs) offer potential for leveraging contextual reasoning to compensate for acoustic degradation, yet their zero-shot capabilities remain uncharacterised. This study evaluates eight commercial speech-to-text services on the TORGO dysarthric speech corpus: four conventional ASR systems (AssemblyAI, Whisper large-v3, Deepgram Nova-3, Nova-3 Medical) and four MLLM-based systems (GPT-4o, GPT-4o Mini, Gemini 2.5 Pro, Gemini 2.5 Flash). Evaluation encompasses lexical accuracy, semantic preservation, and cost-latency trade-offs. Results demonstrate severity-dependent degradation: mild dysarthria achieves 3-5% WER approaching typical-speech benchmarks, whilst severe dysarthria exceeds 49% WER across all systems. A verbatim-transcription prompt yields architecture-specific effects: GPT-4o achieves 7.36 percentage point WER reduction with consistent improvement across all tested speakers, whilst Gemini variants exhibit degradation. Semantic metrics indicate that communicative intent remains partially recoverable despite elevated lexical error rates. These findings establish empirical baselines enabling evidence-based technology selection for assistive voice interface deployment.
Speech enhancement methods are commonly believed to improve the performance of automatic speech recognition (ASR) in noisy environments. However, the effectiveness of these techniques cannot be taken for granted in the case of modern large-scale ASR models trained on diverse, noisy data. We present a systematic evaluation of MetricGAN-plus-voicebank denoising on four state-of-the-art ASR systems: OpenAI Whisper, NVIDIA Parakeet, Google Gemini Flash 2.0, Parrotlet-a using 500 medical speech recordings under nine noise conditions. ASR performance is measured using semantic WER (semWER), a normalized word error rate (WER) metric accounting for domain-specific normalizations. Our results reveal a counterintuitive finding: speech enhancement preprocessing degrades ASR performance across all noise conditions and models. Original noisy audio achieves lower semWER than enhanced audio in all 40 tested configurations (4 models x 10 conditions), with degradations ranging from 1.1% to 46.6% absolute semWER increase. These findings suggest that modern ASR models possess sufficient internal noise robustness and that traditional speech enhancement may remove acoustic features critical for ASR. For practitioners deploying medical scribe systems in noisy clinical environments, our results indicate that preprocessing audio with noise reduction techniques might not just be computationally wasteful but also be potentially harmful to the transcription accuracy.
Robust Voice Activity Detection (VAD) remains a challenging task, especially under noisy, diverse, and unseen acoustic conditions. Beyond algorithmic development, a key limitation in advancing VAD research is the lack of large-scale, systematically controlled, and publicly available datasets. To address this, we introduce LibriVAD - a scalable open-source dataset derived from LibriSpeech and augmented with diverse real-world and synthetic noise sources. LibriVAD enables systematic control over speech-to-noise ratio, silence-to-speech ratio (SSR), and noise diversity, and is released in three sizes (15 GB, 150 GB, and 1.5 TB) with two variants (LibriVAD-NonConcat and LibriVAD-Concat) to support different experimental setups. We benchmark multiple feature-model combinations, including waveform, Mel-Frequency Cepstral Coefficients (MFCC), and Gammatone filter bank cepstral coefficients, and introduce the Vision Transformer (ViT) architecture for VAD. Our experiments show that ViT with MFCC features consistently outperforms established VAD models such as boosted deep neural network and convolutional long short-term memory deep neural network across seen, unseen, and out-of-distribution (OOD) conditions, including evaluation on the real-world VOiCES dataset. We further analyze the impact of dataset size and SSR on model generalization, experimentally showing that scaling up dataset size and balancing SSR noticeably and consistently enhance VAD performance under OOD conditions. All datasets, trained models, and code are publicly released to foster reproducibility and accelerate progress in VAD research.
This paper presents a lightweight text-to-speech (TTS) system developed for the WildSpoof Challenge TTS Track. Our approach fine-tunes the recently released open-weight TTS model, \textit{Supertonic}\footnote{\url{https://github.com/supertone-inc/supertonic}}, with Self-Purifying Flow Matching (SPFM) to enable robust adaptation to in-the-wild speech. SPFM mitigates label noise by comparing conditional and unconditional flow matching losses on each sample, routing suspicious text--speech pairs to unconditional training while still leveraging their acoustic information. The resulting model achieves the lowest Word Error Rate (WER) among all participating teams, while ranking second in perceptual metrics such as UTMOS and DNSMOS. These findings demonstrate that efficient, open-weight architectures like Supertonic can be effectively adapted to diverse real-world speech conditions when combined with explicit noise-handling mechanisms such as SPFM.
We present an innovative end-to-end framework for synthesizing semantically meaningful co-speech gestures and deploying them in real-time on a humanoid robot. This system addresses the challenge of creating natural, expressive non-verbal communication for robots by integrating advanced gesture generation techniques with robust physical control. Our core innovation lies in the meticulous integration of a semantics-aware gesture synthesis module, which derives expressive reference motions from speech input by leveraging a generative retrieval mechanism based on large language models (LLMs) and an autoregressive Motion-GPT model. This is coupled with a high-fidelity imitation learning control policy, the MotionTracker, which enables the Unitree G1 humanoid robot to execute these complex motions dynamically and maintain balance. To ensure feasibility, we employ a robust General Motion Retargeting (GMR) method to bridge the embodiment gap between human motion data and the robot platform. Through comprehensive evaluation, we demonstrate that our combined system produces semantically appropriate and rhythmically coherent gestures that are accurately tracked and executed by the physical robot. To our knowledge, this work represents a significant step toward general real-world use by providing a complete pipeline for automatic, semantic-aware, co-speech gesture generation and synchronized real-time physical deployment on a humanoid robot.