This paper incorporates the efficiency of automatic summarization and addresses the challenge of generating personalized summaries tailored to individual users' interests and requirements. To tackle this challenge, we introduce SummPilot, an interaction-based customizable summarization system. SummPilot leverages a large language model to facilitate both automatic and interactive summarization. Users can engage with the system to understand document content and personalize summaries through interactive components such as semantic graphs, entity clustering, and explainable evaluation. Our demo and user studies demonstrate SummPilot's adaptability and usefulness for customizable summarization.
The rapid expansion of research across machine learning, vision, and language has produced a volume of publications that is increasingly difficult to synthesize. Traditional bibliometric tools rely mainly on metadata and offer limited visibility into the semantic content of papers, making it hard to track how research themes evolve over time or how different areas influence one another. To obtain a clearer picture of recent developments, we compile a unified corpus of more than 100,000 papers from 22 major conferences between 2020 and 2025 and construct a multidimensional profiling pipeline to organize and analyze their textual content. By combining topic clustering, LLM-assisted parsing, and structured retrieval, we derive a comprehensive representation of research activity that supports the study of topic lifecycles, methodological transitions, dataset and model usage patterns, and institutional research directions. Our analysis highlights several notable shifts, including the growth of safety, multimodal reasoning, and agent-oriented studies, as well as the gradual stabilization of areas such as neural machine translation and graph-based methods. These findings provide an evidence-based view of how AI research is evolving and offer a resource for understanding broader trends and identifying emerging directions. Code and dataset: https://github.com/xzc-zju/Profiling_Scientific_Literature
Neural embeddings have a notorious blind spot: they can't reliably tell synonyms apart from antonyms. Consequently, increasing similarity thresholds often fails to prevent opposites from being grouped together. We've built a large-scale semantic clustering system specifically designed to tackle this problem head on. Our pipeline chews through 15 million lexical items, evaluates a massive 520 million potential relationships, and ultimately generates 2.9 million high-precision semantic clusters. The system makes three primary contributions. First, we introduce a labeled dataset of 843,000 concept pairs spanning synonymy, antonymy, and co-hyponymy, constructed via Gemini 2.5-Flash LLM augmentation and verified using human-curated dictionary resources. Second, we propose a specialized three-way semantic relation discriminator that achieves 90% macro-F1, enabling robust disambiguation beyond raw embedding similarity. Third, we introduce a novel soft-to-hard clustering algorithm that mitigates semantic drift preventing erroneous transitive chains (e.g., hot -> spicy -> pain -> depression) while simultaneously resolving polysemy. Our approach employs a topology-aware two-stage expansion-pruning procedure with topological voting, ensuring that each term is assigned to exactly one semantically coherent cluster. The resulting resource enables high-precision semantic search and retrieval-augmented generation, particularly for morphologically rich and low-resource languages where existing synonym databases remain sparse.
As a key task in hyperspectral image processing, hyperspectral anomaly detection has garnered significant attention and undergone extensive research. Existing methods primarily relt on two prior assumption: low-rank background and sparse anomaly, along with additional spatial assumptions of the background. However, most methods only utilize the sparsity prior assumption for anomalies and rarely expand on this hypothesis. From observations of hyperspectral images, we find that anomalous pixels exhibit certain spatial distribution characteristics: they often manifest as small, clustered groups in space, which we refer to as cluster sparsity of anomalies. Then, we combined the cluster sparsity prior with the classical GoDec algorithm, incorporating the cluster sparsity prior into the S-step of GoDec. This resulted in a new hyperspectral anomaly detection method, which we called Turbo-GoDec. In this approach, we modeled the cluster sparsity prior of anomalies using a Markov random field and computed the marginal probabilities of anomalies through message passing on a factor graph. Locations with high anomalous probabilities were treated as the sparse component in the Turbo-GoDec. Experiments are conducted on three real hyperspectral image (HSI) datasets which demonstrate the superior performance of the proposed Turbo-GoDec method in detecting small-size anomalies comparing with the vanilla GoDec (LSMAD) and state-of-the-art anomaly detection methods. The code is available at https://github.com/jiahuisheng/Turbo-GoDec.
Large Language Models (LLMs) are fundamentally constrained by the quadratic computational cost of self-attention and the "Lost in the Middle" phenomenon, where reasoning capabilities degrade as context windows expand. Existing solutions, primarily "Flat RAG" architectures relying on vector databases, treat memory as an unstructured bag of embeddings. This approach fails to capture the hierarchical and temporal structure of long-horizon interactions, leading to "Vector Haze", the retrieval of disjointed facts lacking episodic continuity. We propose Aeon, a Neuro-Symbolic Cognitive Operating System that redefines memory not as a static store, but as a managed OS resource. Aeon structures memory into a Memory Palace (a spatial index implemented via Atlas, a SIMD-accelerated Page-Clustered Vector Index that combines small-world graph navigation with B+ Tree-style disk locality to minimize read amplification) and a Trace (a neuro-symbolic episodic graph). We introduce the Semantic Lookaside Buffer (SLB), a predictive caching mechanism that exploits conversational locality to achieve sub-millisecond retrieval latencies. Benchmarks demonstrate that Aeon achieves < 1ms retrieval latency on conversational workloads while ensuring state consistency via a zero-copy C++/Python bridge, effectively enabling persistent, structured memory for autonomous agents.
With grid operators confronting rising uncertainty from renewable integration and a broader push toward electrification, Demand-Side Management (DSM) -- particularly Demand Response (DR) -- has attracted significant attention as a cost-effective mechanism for balancing modern electricity systems. Unprecedented volumes of consumption data from a continuing global deployment of smart meters enable consumer segmentation based on real usage behaviours, promising to inform the design of more effective DSM and DR programs. However, existing clustering-based segmentation methods insufficiently reflect the behavioural diversity of consumers, often relying on rigid temporal alignment, and faltering in the presence of anomalies, missing data, or large-scale deployments. To address these challenges, we propose a novel two-stage clustering framework -- Clustered Representations Optimising Consumer Segmentation (CROCS). In the first stage, each consumer's daily load profiles are clustered independently to form a Representative Load Set (RLS), providing a compact summary of their typical diurnal consumption behaviours. In the second stage, consumers are clustered using the Weighted Sum of Minimum Distances (WSMD), a novel set-to-set measure that compares RLSs by accounting for both the prevalence and similarity of those behaviours. Finally, community detection on the WSMD-induced graph reveals higher-order prototypes that embody the shared diurnal behaviours defining consumer groups, enhancing the interpretability of the resulting clusters. Extensive experiments on both synthetic and real Australian smart meter datasets demonstrate that CROCS captures intra-consumer variability, uncovers both synchronous and asynchronous behavioural similarities, and remains robust to anomalies and missing data, while scaling efficiently through natural parallelisation. These results...
This paper, introducing a novel method in philomatics, draws on Wittgenstein's concept of family resemblance from analytic philosophy to develop a clustering algorithm for machine learning. According to Wittgenstein's Philosophical Investigations (1953), family resemblance holds that members of a concept or category are connected by overlapping similarities rather than a single defining property. Consequently, a family of entities forms a chain of items sharing overlapping traits. This philosophical idea naturally lends itself to a graph-based approach in machine learning. Accordingly, we propose the Wittgenstein's Family Resemblance (WFR) clustering algorithm and its kernel variant, kernel WFR. This algorithm computes resemblance scores between neighboring data instances, and after thresholding these scores, a resemblance graph is constructed. The connected components of this graph define the resulting clusters. Simulations on benchmark datasets demonstrate that WFR is an effective nonlinear clustering algorithm that does not require prior knowledge of the number of clusters or assumptions about their shapes.
Geometric Representation Learning (GRL) aims to approximate the non-Euclidean topology of high-dimensional data through discrete graph structures, grounded in the manifold hypothesis. However, traditional static graph construction methods based on Euclidean distance often fail to capture the intrinsic curvature characteristics of the data manifold. Although Ollivier-Ricci Curvature Flow (OCF) has proven to be a powerful tool for dynamic topological optimization, its core reliance on Optimal Transport (Wasserstein distance) leads to prohibitive computational complexity, severely limiting its application in large-scale datasets and deep learning frameworks. To break this bottleneck, this paper proposes a novel geometric evolution framework: Resistance Curvature Flow (RCF). Leveraging the concept of effective resistance from circuit physics, RCF transforms expensive curvature optimization into efficient matrix operations. This approach achieves over 100x computational acceleration while maintaining geometric optimization capabilities comparable to OCF. We provide an in-depth exploration of the theoretical foundations and dynamical principles of RCF, elucidating how it guides the redistribution of edge weights via curvature gradients to eliminate topological noise and strengthen local cluster structures. Furthermore, we provide a mechanistic explanation of RCF's role in manifold enhancement and noise suppression, as well as its compatibility with deep learning models. We design a graph optimization algorithm, DGSL-RCF, based on this framework. Experimental results across deep metric learning, manifold learning, and graph structure learning demonstrate that DGSL-RCF significantly improves representation quality and downstream task performance.
Large language models (LLMs) achieve strong average performance yet remain unreliable at the instance level, with frequent hallucinations, brittle failures, and poorly calibrated confidence. We study reliability through the lens of multi-model consensus: given responses from several heterogeneous LLMs, can we learn which answer is most likely correct for a given query? We introduce a Multi-Model Consensus Reasoning Engine that treats the set of LLM outputs as input to a supervised meta-learner. The system maps natural language responses into structured features using semantic embeddings, pairwise similarity and clustering statistics, lexical and structural cues, reasoning-quality scores, confidence estimates, and model-specific priors, and then applies gradient-boosted trees, listwise ranking, and graph neural networks over similarity graphs of answers. Using three open-weight LLMs evaluated on compact, resource-constrained subsets of GSM8K, ARC-Challenge, HellaSwag, and TruthfulQA, our best graph-attention-based consensus model improves macro-average accuracy by 4.6 percentage points over the strongest single LLM and by 8.1 points over majority vote, while also yielding lower Brier scores and fewer TruthfulQA hallucinations. Ablation and feature-importance analyses show that semantic agreement and clustering features are most influential, with reasoning-quality and model-prior features providing complementary gains, suggesting supervised multi-model consensus is a practical route toward more reliable LLM behavior, even in a modest single-machine setup.
Named Entity Linking (NEL) is a core component of biomedical Information Extraction (IE) pipelines, yet assessing its quality at scale is challenging due to the high cost of expert annotations and the large size of corpora. In this paper, we present a sampling-based framework to estimate the NEL accuracy of large-scale IE corpora under statistical guarantees and constrained annotation budgets. We frame NEL accuracy estimation as a constrained optimization problem, where the objective is to minimize expected annotation cost subject to a target Margin of Error (MoE) for the corpus-level accuracy estimate. Building on recent works on knowledge graph accuracy estimation, we adapt Stratified Two-Stage Cluster Sampling (STWCS) to the NEL setting, defining label-based strata and global surface-form clusters in a way that is independent of NEL annotations. Applied to 11,184 NEL annotations in GutBrainIE -- a new biomedical corpus openly released in fall 2025 -- our framework reaches a MoE $\leq 0.05$ by manually annotating only 2,749 triples (24.6%), leading to an overall accuracy estimate of $0.915 \pm 0.0473$. A time-based cost model and simulations against a Simple Random Sampling (SRS) baseline show that our design reduces expert annotation time by about 29% at fixed sample size. The framework is generic and can be applied to other NEL benchmarks and IE pipelines that require scalable and statistically robust accuracy assessment.