



This paper presents STARCaster, an identity-aware spatio-temporal video diffusion model that addresses both speech-driven portrait animation and free-viewpoint talking portrait synthesis, given an identity embedding or reference image, within a unified framework. Existing 2D speech-to-video diffusion models depend heavily on reference guidance, leading to limited motion diversity. At the same time, 3D-aware animation typically relies on inversion through pre-trained tri-plane generators, which often leads to imperfect reconstructions and identity drift. We rethink reference- and geometry-based paradigms in two ways. First, we deviate from strict reference conditioning at pre-training by introducing softer identity constraints. Second, we address 3D awareness implicitly within the 2D video domain by leveraging the inherent multi-view nature of video data. STARCaster adopts a compositional approach progressing from ID-aware motion modeling, to audio-visual synchronization via lip reading-based supervision, and finally to novel view animation through temporal-to-spatial adaptation. To overcome the scarcity of 4D audio-visual data, we propose a decoupled learning approach in which view consistency and temporal coherence are trained independently. A self-forcing training scheme enables the model to learn from longer temporal contexts than those generated at inference, mitigating the overly static animations common in existing autoregressive approaches. Comprehensive evaluations demonstrate that STARCaster generalizes effectively across tasks and identities, consistently surpassing prior approaches in different benchmarks.
The vast majority of the world's languages, particularly creoles like Nagamese, remain severely under-resourced in Natural Language Processing (NLP), creating a significant barrier to their representation in digital technology. This paper introduces NagaNLP, a comprehensive open-source toolkit for Nagamese, bootstrapped through a novel methodology that relies on LLM-driven but human-validated synthetic data generation. We detail a multi-stage pipeline where an expert-guided LLM (Gemini) generates a candidate corpus, which is then refined and annotated by native speakers. This synthetic-hybrid approach yielded a 10K pair conversational dataset and a high-quality annotated corpus for foundational tasks. To assess the effectiveness of our methodology, we trained both discriminative and generative models. Our fine-tuned XLM-RoBERTa-base model establishes a new benchmark for Nagamese, achieving a 93.81\% accuracy (0.90 F1-Macro) on Part-of-Speech tagging and a 0.75 F1-Macro on Named Entity Recognition, massively outperforming strong zero-shot baselines. Furthermore, we fine-tuned a Llama-3.2-3B Instruct model, named NagaLLaMA, which demonstrates superior performance on conversational tasks, achieving a Perplexity of 3.85, an order of magnitude improvement over its few-shot counterpart (96.76). We release the NagaNLP toolkit, including all datasets, models, and code, providing a foundational resource for a previously underserved language and a reproducible framework for reducing data scarcity in other low-resource contexts.



This paper presents the BUT submission to the WildSpoof Challenge, focusing on the Spoofing-robust Automatic Speaker Verification (SASV) track. We propose a SASV framework designed to bridge the gap between general audio understanding and specialized speech analysis. Our subsystem integrates diverse Self-Supervised Learning front-ends ranging from general audio models (e.g., Dasheng) to speech-specific encoders (e.g., WavLM). These representations are aggregated via a lightweight Multi-Head Factorized Attention back-end for corresponding subtasks. Furthermore, we introduce a feature domain augmentation strategy based on Distribution Uncertainty to explicitly model and mitigate the domain shift caused by unseen neural vocoders and recording environments. By fusing these robust CM scores with state-of-the-art ASV systems, our approach achieves superior minimization of the a-DCFs and EERs.




Generating realistic human motions that naturally respond to both spoken language and physical objects is crucial for interactive digital experiences. Current methods, however, address speech-driven gestures or object interactions independently, limiting real-world applicability due to a lack of integrated, comprehensive datasets. To overcome this, we introduce InteracTalker, a novel framework that seamlessly integrates prompt-based object-aware interactions with co-speech gesture generation. We achieve this by employing a multi-stage training process to learn a unified motion, speech, and prompt embedding space. To support this, we curate a rich human-object interaction dataset, formed by augmenting an existing text-to-motion dataset with detailed object interaction annotations. Our framework utilizes a Generalized Motion Adaptation Module that enables independent training, adapting to the corresponding motion condition, which is then dynamically combined during inference. To address the imbalance between heterogeneous conditioning signals, we propose an adaptive fusion strategy, which dynamically reweights the conditioning signals during diffusion sampling. InteracTalker successfully unifies these previously separate tasks, outperforming prior methods in both co-speech gesture generation and object-interaction synthesis, outperforming gesture-focused diffusion methods, yielding highly realistic, object-aware full-body motions with enhanced realism, flexibility, and control.
Understanding videos inherently requires reasoning over both visual and auditory information. To properly evaluate Omni-Large Language Models (Omni-LLMs), which are capable of processing multi-modal information including vision and audio, an effective benchmark must comprehensively cover three key aspects: (1) multi-modal dependency (i.e., questions that cannot be answered using vision or audio alone), (2) diverse audio information types (e.g., speech, sound events), and (3) varying scene spans. However, existing datasets fall short in one or more of these dimensions, limiting strict and comprehensive evaluation. To address this gap, we introduce JointAVBench, a novel benchmark with strict audio-video correlation, spanning five cognitive dimensions, four audio information types (speech, sound events, music, vocal traits), and three scene spans (single-, cross-, and full-scene). Given the high cost of manual annotation, we propose an automated pipeline that leverages state-of-the-art vision-LLMs, audio-LLMs, and general-purpose LLMs to synthesize questions and answers that strictly require joint audio-visual understanding. We evaluate leading vision-only, audio-only, and Omni-LLMs on our dataset. Results show that even the best-performing Omni-LLM achieves an average accuracy of only 62.6\%, outperforming uni-modal baselines but revealing substantial room for improvement, especially in cross-scene reasoning.
Restoring speech communication from neural signals is a central goal of brain-computer interface research, yet EEG-based speech reconstruction remains challenging due to limited spatial resolution, susceptibility to noise, and the absence of temporally aligned acoustic targets in imagined speech. In this study, we propose an EEG-to-Voice paradigm that directly reconstructs speech from non-invasive EEG signals without dynamic time warping (DTW) or explicit temporal alignment. The proposed pipeline generates mel-spectrograms from EEG in an open-loop manner using a subject-specific generator, followed by pretrained vocoder and automatic speech recognition (ASR) modules to synthesize speech waveforms and decode text. Separate generators were trained for spoken speech and imagined speech, and transfer learning-based domain adaptation was applied by pretraining on spoken speech and adapting to imagined speech. A minimal language model-based correction module was optionally applied to correct limited ASR errors while preserving semantic structure. The framework was evaluated under 2 s and 4 s speech conditions using acoustic-level metrics (PCC, RMSE, MCD) and linguistic-level metrics (CER, WER). Stable acoustic reconstruction and comparable linguistic accuracy were observed for both spoken speech and imagined speech. While acoustic similarity decreased for longer utterances, text-level decoding performance was largely preserved, and word-position analysis revealed a mild increase in decoding errors toward later parts of sentences. The language model-based correction consistently reduced CER and WER without introducing semantic distortion. These results demonstrate the feasibility of direct, open-loop EEG-to-Voice reconstruction for spoken speech and imagined speech without explicit temporal alignment.
This work introduces a lightweight input-level adapter for the F5-TTS model that enables Romanian Language support. To preserve the existing capabilities of the model (voice cloning, English and Chinese support), we keep the original weights frozen, append a sub-network to the model and train it as an extension for the textual embedding matrix of the text encoder. For simplicity, we rely on ConvNeXt module implemented in F5-TTS to also model the co-dependencies between the new character-level embeddings. The module serves as a ``soft`` letter-to-sound layer, converting Romanian text into a continuous representation that the F5-TTS model uses to produce naturally sounding Romanian utterances. We evaluate the model with a pool of 20 human listeners across three tasks: (a) audio similarity between reference and generated speech, (b) pronunciation and naturalness and (c) Romanian-English code-switching. The results indicate that our approach maintains voice cloning capabilities and enables, to a certain extent, code-switching within the same utterance; however, residual English accent characteristics remain. We open-source our code and provide example audio samples at https://github.com/racai-ro/Ro-F5TTS.
Generating dynamic 3D facial animation from natural language requires understanding both temporally structured semantics and fine-grained expression changes. Existing datasets and methods mainly focus on speech-driven animation or unstructured expression sequences and therefore lack the semantic grounding and temporal structures needed for expressive human performance generation. In this work, we introduce KeyframeFace, a large-scale multimodal dataset designed for text-to-animation research through keyframe-level supervision. KeyframeFace provides 2,100 expressive scripts paired with monocular videos, per-frame ARKit coefficients, contextual backgrounds, complex emotions, manually defined keyframes, and multi-perspective annotations based on ARKit coefficients and images via Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs). Beyond the dataset, we propose the first text-to-animation framework that explicitly leverages LLM priors for interpretable facial motion synthesis. This design aligns the semantic understanding capabilities of LLMs with the interpretable structure of ARKit's coefficients, enabling high-fidelity expressive animation. KeyframeFace and our LLM-based framework together establish a new foundation for interpretable, keyframe-guided, and context-aware text-to-animation. Code and data are available at https://github.com/wjc12345123/KeyframeFace.
This paper proposes a unified framework, All-in-One ASR, that allows a single model to support multiple automatic speech recognition (ASR) paradigms, including connectionist temporal classification (CTC), attention-based encoder-decoder (AED), and Transducer, in both offline and streaming modes. While each ASR architecture offers distinct advantages and trade-offs depending on the application, maintaining separate models for each scenario incurs substantial development and deployment costs. To address this issue, we introduce a multi-mode joiner that enables seamless integration of various ASR modes within a single unified model. Experiments show that All-in-One ASR significantly reduces the total model footprint while matching or even surpassing the recognition performance of individually optimized ASR models. Furthermore, joint decoding leverages the complementary strengths of different ASR modes, yielding additional improvements in recognition accuracy.
Although normalization layers have long been viewed as indispensable components of deep learning architectures, the recent introduction of Dynamic Tanh (DyT) has demonstrated that alternatives are possible. The point-wise function DyT constrains extreme values for stable convergence and reaches normalization-level performance; this work seeks further for function designs that can surpass it. We first study how the intrinsic properties of point-wise functions influence training and performance. Building on these findings, we conduct a large-scale search for a more effective function design. Through this exploration, we introduce $\mathrm{Derf}(x) = \mathrm{erf}(αx + s)$, where $\mathrm{erf}(x)$ is the rescaled Gaussian cumulative distribution function, and identify it as the most performant design. Derf outperforms LayerNorm, RMSNorm, and DyT across a wide range of domains, including vision (image recognition and generation), speech representation, and DNA sequence modeling. Our findings suggest that the performance gains of Derf largely stem from its improved generalization rather than stronger fitting capacity. Its simplicity and stronger performance make Derf a practical choice for normalization-free Transformer architectures.