With the rapid advancement of Multimodal Large Language Models (MLLMs), their potential has garnered significant attention in Chinese Classical Studies (CCS). While existing research has primarily focused on text and visual modalities, the audio corpus within this domain remains largely underexplored. To bridge this gap, we propose the Multi-task Classical Chinese Literary Genre Audio Corpus (MCGA). It encompasses a diverse range of literary genres across six tasks: Automatic Speech Recognition (ASR), Speech-to-Text Translation (S2TT), Speech Emotion Captioning (SEC), Spoken Question Answering (SQA), Speech Understanding (SU), and Speech Reasoning (SR). Through the evaluation of ten MLLMs, our experimental results demonstrate that current models still face substantial challenges when processed on the MCGA test set. Furthermore, we introduce an evaluation metric for SEC and a metric to measure the consistency between the speech and text capabilities of MLLMs. We release MCGA and our code to the public to facilitate the development of MLLMs with more robust multidimensional audio capabilities in CCS. MCGA Corpus: https://github.com/yxduir/MCGA
The recent surge in open-source Multimodal Large Language Models (MLLM) frameworks, such as LLaVA, provides a convenient kickoff for artificial intelligence developers and researchers. However, most of the MLLM frameworks take vision as the main input modality, and provide limited in-depth support for the modality of speech, audio, and music. This situation hinders the development of audio-language models, and forces researchers to spend a lot of effort on code writing and hyperparameter tuning. We present SLAM-LLM, an open-source deep learning framework designed to train customized MLLMs, focused on speech, language, audio, and music processing. SLAM-LLM provides a modular configuration of different encoders, projectors, LLMs, and parameter-efficient fine-tuning plugins. SLAM-LLM also includes detailed training and inference recipes for mainstream tasks, along with high-performance checkpoints like LLM-based Automatic Speech Recognition (ASR), Automated Audio Captioning (AAC), and Music Captioning (MC). Some of these recipes have already reached or are nearing state-of-the-art performance, and some relevant techniques have also been accepted by academic papers. We hope SLAM-LLM will accelerate iteration, development, data engineering, and model training for researchers. We are committed to continually pushing forward audio-based MLLMs through this open-source framework, and call on the community to contribute to the LLM-based speech, audio and music processing.
We introduce a voice-agentic framework that learns one critical omni-understanding skill: knowing when to trust itself versus when to consult external audio perception. Our work is motivated by a crucial yet counterintuitive finding: naively fine-tuning an omni-model on both speech recognition and external sound understanding tasks often degrades performance, as the model can be easily misled by noisy hypotheses. To address this, our framework, Speech-Hands, recasts the problem as an explicit self-reflection decision. This learnable reflection primitive proves effective in preventing the model from being derailed by flawed external candidates. We show that this agentic action mechanism generalizes naturally from speech recognition to complex, multiple-choice audio reasoning. Across the OpenASR leaderboard, Speech-Hands consistently outperforms strong baselines by 12.1% WER on seven benchmarks. The model also achieves 77.37% accuracy and high F1 on audio QA decisions, showing robust generalization and reliability across diverse audio question answering datasets. By unifying perception and decision-making, our work offers a practical path toward more reliable and resilient audio intelligence.
CAPTCHAs are widely used by websites to block bots and spam by presenting challenges that are easy for humans but difficult for automated programs to solve. To improve accessibility, audio CAPTCHAs are designed to complement visual ones. However, the robustness of audio CAPTCHAs against advanced Large Audio Language Models (LALMs) and Automatic Speech Recognition (ASR) models remains unclear. In this paper, we introduce AI-CAPTCHA, a unified framework that offers (i) an evaluation framework, ACEval, which includes advanced LALM- and ASR-based solvers, and (ii) a novel audio CAPTCHA approach, IllusionAudio, leveraging audio illusions. Through extensive evaluations of seven widely deployed audio CAPTCHAs, we show that most existing methods can be solved with high success rates by advanced LALMs and ASR models, exposing critical security weaknesses. To address these vulnerabilities, we design a new audio CAPTCHA approach, IllusionAudio, which exploits perceptual illusion cues rooted in human auditory mechanisms. Extensive experiments demonstrate that our method defeats all tested LALM- and ASR-based attacks while achieving a 100% human pass rate, significantly outperforming existing audio CAPTCHA methods.
Digital platforms have an ever-expanding user base, and act as a hub for communication, business, and connectivity. However, this has also allowed for the spread of hate speech and misogyny. Artificial intelligence models have emerged as an effective solution for countering online hate speech but are under explored for low resource and code-mixed languages and suffer from a lack of interpretability. Explainable Artificial Intelligence (XAI) can enhance transparency in the decisions of deep learning models, which is crucial for a sensitive domain such as hate speech detection. In this paper, we present a multi-modal and explainable web application for detecting misogyny in text and memes in code-mixed Hindi and English. The system leverages state-of-the-art transformer-based models that support multilingual and multimodal settings. For text-based misogyny identification, the system utilizes XLM-RoBERTa (XLM-R) and multilingual Bidirectional Encoder Representations from Transformers (mBERT) on a dataset of approximately 4,193 comments. For multimodal misogyny identification from memes, the system utilizes mBERT + EfficientNet, and mBERT + ResNET trained on a dataset of approximately 4,218 memes. It also provides feature importance scores using explainability techniques including Shapley Additive Values (SHAP) and Local Interpretable Model Agnostic Explanations (LIME). The application aims to serve as a tool for both researchers and content moderators, to promote further research in the field, combat gender based digital violence, and ensure a safe digital space. The system has been evaluated using human evaluators who provided their responses on Chatbot Usability Questionnaire (CUQ) and User Experience Questionnaire (UEQ) to determine overall usability.
In this work, we aim to enable legged robots to learn how to interpret human social cues and produce appropriate behaviors through physical human guidance. However, learning through physical engagement can place a heavy burden on users when the process requires large amounts of human-provided data. To address this, we propose a human-in-the-loop framework that enables robots to acquire navigational behaviors in a data-efficient manner and to be controlled via multimodal natural human inputs, specifically gestural and verbal commands. We reconstruct interaction scenes using a physics-based simulation and aggregate data to mitigate distributional shifts arising from limited demonstration data. Our progressive goal cueing strategy adaptively feeds appropriate commands and navigation goals during training, leading to more accurate navigation and stronger alignment between human input and robot behavior. We evaluate our framework across six real-world agile navigation scenarios, including jumping over or avoiding obstacles. Our experimental results show that our proposed method succeeds in almost all trials across these scenarios, achieving a 97.15% task success rate with less than 1 hour of demonstration data in total.
While large language models (LLMs) have increasingly been applied to hate speech detoxification, the prompts often trigger safety alerts, causing LLMs to refuse the task. In this study, we systematically investigate false refusal behavior in hate speech detoxification and analyze the contextual and linguistic biases that trigger such refusals. We evaluate nine LLMs on both English and multilingual datasets, our results show that LLMs disproportionately refuse inputs with higher semantic toxicity and those targeting specific groups, particularly nationality, religion, and political ideology. Although multilingual datasets exhibit lower overall false refusal rates than English datasets, models still display systematic, language-dependent biases toward certain targets. Based on these findings, we propose a simple cross-translation strategy, translating English hate speech into Chinese for detoxification and back, which substantially reduces false refusals while preserving the original content, providing an effective and lightweight mitigation approach.
Mental manipulation, the strategic use of language to covertly influence or exploit others, is a newly emerging task in computational social reasoning. Prior work has focused exclusively on textual conversations, overlooking how manipulative tactics manifest in speech. We present the first study of mental manipulation detection in spoken dialogues, introducing a synthetic multi-speaker benchmark SPEECHMENTALMANIP that augments a text-based dataset with high-quality, voice-consistent Text-to-Speech rendered audio. Using few-shot large audio-language models and human annotation, we evaluate how modality affects detection accuracy and perception. Our results reveal that models exhibit high specificity but markedly lower recall on speech compared to text, suggesting sensitivity to missing acoustic or prosodic cues in training. Human raters show similar uncertainty in the audio setting, underscoring the inherent ambiguity of manipulative speech. Together, these findings highlight the need for modality-aware evaluation and safety alignment in multimodal dialogue systems.
Autoregressive speech synthesis often adopts a left-to-right order, yet generation order is a modelling choice. We investigate decoding order through masked diffusion framework, which progressively unmasks positions and allows arbitrary decoding orders during training and inference. By interpolating between identity and random permutations, we show that randomness in decoding order affects speech quality. We further compare fixed strategies, such as \texttt{l2r} and \texttt{r2l} with adaptive ones, such as Top-$K$, finding that fixed-order decoding, including the dominating left-to-right approach, is suboptimal, while adaptive decoding yields better performance. Finally, since masked diffusion requires discrete inputs, we quantise acoustic representations and find that even 1-bit quantisation can support reasonably high-quality speech.
Large Audio Language Models (LALMs) have been widely applied in real-time scenarios, such as in-car assistants and online meeting comprehension. In practice, audio inputs are often corrupted by device and environmental noise, leading to performance degradation. However, existing LALM studies on noise lack quantitative analysis and rely mainly on intuition and empirical observation, thus failing to understand practical robustness. To address this issue, we introduce Signal Embedding Energy (SEE), a method for quantifying the impact of noise intensity on LALM inputs, enabling the differentiation of LALM robustness in real-world deployments. SEE introduces a perspective based on structured activation subspaces derived from the model's internal representations, which more accurately captures its perception of noise than raw audio features. Across experiments, SEE exhibits a strong correlation with LALM performance, achieving a correlation of 0.98. Surprisingly, traditional audio denoising methods are only marginally effective for LALMs, and, in some cases, even increase SEE and impair performance. This suggests a mismatch between speech-centric denoising objectives and the noise sensitivity of modern LALMs. Therefore, we propose a mitigation strategy derived from SEE to denoise LALM inputs, outperforming existing denoising methods. This paper introduces a novel metric for noise quantification in LALMs, providing guidance for robustness improvements in real-world deployments.