We present TagSpeech, a unified LLM-based framework that utilizes Temporal Anchor Grounding for joint multi-speaker ASR and diarization. The framework is built on two key designs: (1) decoupled semantic and speaker streams fine-tuned via Serialized Output Training (SOT) to learn turn-taking dynamics; and (2) an interleaved time anchor mechanism that not only supports fine-grained timestamp prediction but also acts as a synchronization signal between semantic understanding and speaker tracking. Compared to previous works that primarily focus on speaker-attributed ASR or implicit diarization, TagSpeech addresses the challenge of fine-grained speaker-content alignment and explicitly models "who spoke what and when" in an end-to-end manner. Experiments on AMI and AliMeeting benchmarks demonstrate that our method achieves consistent improvements in Diarization Error Rate (DER) over strong end-to-end baselines, including Qwen-Omni and Gemini, particularly in handling complex speech overlaps. Moreover, TagSpeech employs a parameter-efficient training paradigm in which the LLM backbone is frozen and only lightweight projectors are trained, resulting in strong performance with low computational cost.
In this study, we present a multimodal framework for predicting neuro-facial disorders by capturing both vocal and facial cues. We hypothesize that explicitly disentangling shared and modality-specific representations within multimodal foundation model embeddings can enhance clinical interpretability and generalization. To validate this hypothesis, we propose DIVINE a fully disentangled multimodal framework that operates on representations extracted from state-of-the-art (SOTA) audio and video foundation models, incorporating hierarchical variational bottlenecks, sparse gated fusion, and learnable symptom tokens. DIVINE operates in a multitask learning setup to jointly predict diagnostic categories (Healthy Control,ALS, Stroke) and severity levels (Mild, Moderate, Severe). The model is trained using synchronized audio and video inputs and evaluated on the Toronto NeuroFace dataset under full (audio-video) as well as single-modality (audio-only and video-only) test conditions. Our proposed approach, DIVINE achieves SOTA result, with the DeepSeek-VL2 and TRILLsson combination reaching 98.26% accuracy and 97.51% F1-score. Under modality-constrained scenarios, the framework performs well, showing strong generalization when tested with video-only or audio-only inputs. It consistently yields superior performance compared to unimodal models and baseline fusion techniques. To the best of our knowledge, DIVINE is the first framework that combines cross-modal disentanglement, adaptive fusion, and multitask learning to comprehensively assess neurological disorders using synchronized speech and facial video.
We propose a unified framework for not only attributing synthetic speech to its source but also for detecting speech generated by synthesizers that were not encountered during training. This requires methods that move beyond simple detection to support both detailed forensic analysis and open-set generalization. To address this, we introduce SIGNAL, a hybrid framework that combines speech foundation models (SFMs) with graph-based modeling and open-set-aware inference. Our framework integrates Graph Neural Networks (GNNs) and a k-Nearest Neighbor (KNN) classifier, allowing it to capture meaningful relationships between utterances and recognize speech that doesn`t belong to any known generator. It constructs a query-conditioned graph over generator class prototypes, enabling the GNN to reason over relationships among candidate generators, while the KNN branch supports open-set detection via confidence-based thresholding. We evaluate SIGNAL using the DiffSSD dataset, which offers a diverse mix of real speech and synthetic audio from both open-source and commercial diffusion-based TTS systems. To further assess generalization, we also test on the SingFake benchmark. Our results show that SIGNAL consistently improves performance across both tasks, with Mamba-based embeddings delivering especially strong results. To the best of our knowledge, this is the first study to unify graph-based learning and open-set detection for tracing synthetic speech back to its origin.
In speech language modeling, two architectures dominate the frontier: the Transformer and the Conformer. However, it remains unknown whether their comparable performance stems from convergent processing strategies or distinct architectural inductive biases. We introduce Architectural Fingerprinting, a probing framework that isolates the effect of architecture on representation, and apply it to a controlled suite of 24 pre-trained encoders (39M-3.3B parameters). Our analysis reveals divergent hierarchies: Conformers implement a "Categorize Early" strategy, resolving phoneme categories 29% earlier in depth and speaker gender by 16% depth. In contrast, Transformers "Integrate Late," deferring phoneme, accent, and duration encoding to deep layers (49-57%). These fingerprints suggest design heuristics: Conformers' front-loaded categorization may benefit low-latency streaming, while Transformers' deep integration may favor tasks requiring rich context and cross-utterance normalization.
Large Multimodal Models (LMMs) for video-audio understanding have traditionally been evaluated only on shorter videos of a few minutes long. In this paper, we introduce QMAVIS (Q Team-Multimodal Audio Video Intelligent Sensemaking), a novel long video-audio understanding pipeline built through a late fusion of LMMs, Large Language Models, and speech recognition models. QMAVIS addresses the gap in long-form video analytics, particularly for longer videos of a few minutes to beyond an hour long, opening up new potential applications in sensemaking, video content analysis, embodied AI, etc. Quantitative experiments using QMAVIS demonstrated a 38.75% improvement over state-of-the-art video-audio LMMs like VideoLlaMA2 and InternVL2 on the VideoMME (with subtitles) dataset, which comprises long videos with audio information. Evaluations on other challenging video understanding datasets like PerceptionTest and EgoSchema saw up to 2% improvement, indicating competitive performance. Qualitative experiments also showed that QMAVIS is able to extract the nuances of different scenes in a long video audio content while understanding the overarching narrative. Ablation studies were also conducted to ascertain the impact of each component in the fusion pipeline.
Audio deepfake detection has become increasingly challenging due to rapid advances in speech synthesis and voice conversion technologies, particularly under channel distortions, replay attacks, and real-world recording conditions. This paper proposes a resolution-aware audio deepfake detection framework that explicitly models and aligns multi-resolution spectral representations through cross-scale attention and consistency learning. Unlike conventional single-resolution or implicit feature-fusion approaches, the proposed method enforces agreement across complementary time--frequency scales. The proposed framework is evaluated on three representative benchmarks: ASVspoof 2019 (LA and PA), the Fake-or-Real (FoR) dataset, and the In-the-Wild Audio Deepfake dataset under a speaker-disjoint protocol. The method achieves near-perfect performance on ASVspoof LA (EER 0.16%), strong robustness on ASVspoof PA (EER 5.09%), FoR rerecorded audio (EER 4.54%), and in-the-wild deepfakes (AUC 0.98, EER 4.81%), significantly outperforming single-resolution and non-attention baselines under challenging conditions. The proposed model remains lightweight and efficient, requiring only 159k parameters and less than 1~GFLOP per inference, making it suitable for practical deployment. Comprehensive ablation studies confirm the critical contributions of cross-scale attention and consistency learning, while gradient-based interpretability analysis reveals that the model learns resolution-consistent and semantically meaningful spectral cues across diverse spoofing conditions. These results demonstrate that explicit cross-resolution modeling provides a principled, robust, and scalable foundation for next-generation audio deepfake detection systems.
Speech and language are valuable for interacting with technology. It would be ideal to be able to decouple their use from anthropomorphization, which has recently met an important moment of reckoning. In the world of folktales, language is everywhere and talking to extraordinary objects is not unusual. This overview presents examples of the analogies that folktales offer. Extraordinary objects in folktales are diverse and also memorable. Language capacity and intelligence are not always connected to humanness. Consideration of folktales can offer inspiration and insight for using speech and language for interacting with technology.
We release Pantagruel models, a new family of self-supervised encoder models for French text and speech. Instead of predicting modality-tailored targets such as textual tokens or speech units, Pantagruel learns contextualized target representations in the feature space, allowing modality-specific encoders to capture linguistic and acoustic regularities more effectively. Separate models are pre-trained on large-scale French corpora, including Wikipedia, OSCAR and CroissantLLM for text, together with MultilingualLibriSpeech, LeBenchmark, and INA-100k for speech. INA-100k is a newly introduced 100,000-hour corpus of French audio derived from the archives of the Institut National de l'Audiovisuel (INA), the national repository of French radio and television broadcasts, providing highly diverse audio data. We evaluate Pantagruel across a broad range of downstream tasks spanning both modalities, including those from the standard French benchmarks such as FLUE or LeBenchmark. Across these tasks, Pantagruel models show competitive or superior performance compared to strong French baselines such as CamemBERT, FlauBERT, and LeBenchmark2.0, while maintaining a shared architecture that can seamlessly handle either speech or text inputs. These results confirm the effectiveness of feature-space self-supervised objectives for French representation learning and highlight Pantagruel as a robust foundation for multimodal speech-text understanding.
This paper presents an AI glasses system that integrates real-time voice processing, artificial intelligence(AI) agents, and cross-network streaming capabilities. The system employs dual-agent architecture where Agent 01 handles Automatic Speech Recognition (ASR) and Agent 02 manages AI processing through local Large Language Models (LLMs), Model Context Protocol (MCP) tools, and Retrieval-Augmented Generation (RAG). The system supports real-time RTSP streaming for voice and video data transmission, eye tracking data collection, and remote task execution through RabbitMQ messaging. Implementation demonstrates successful voice command processing with multilingual support and cross-platform task execution capabilities.
Africa is home to over one-third of the world's languages, yet remains underrepresented in AI research. We introduce Afri-MCQA, the first Multilingual Cultural Question-Answering benchmark covering 7.5k Q&A pairs across 15 African languages from 12 countries. The benchmark offers parallel English-African language Q&A pairs across text and speech modalities and was entirely created by native speakers. Benchmarking large language models (LLMs) on Afri-MCQA shows that open-weight models perform poorly across evaluated cultures, with near-zero accuracy on open-ended VQA when queried in native language or speech. To evaluate linguistic competence, we include control experiments meant to assess this specific aspect separate from cultural knowledge, and we observe significant performance gaps between native languages and English for both text and speech. These findings underscore the need for speech-first approaches, culturally grounded pretraining, and cross-lingual cultural transfer. To support more inclusive multimodal AI development in African languages, we release our Afri-MCQA under academic license or CC BY-NC 4.0 on HuggingFace (https://huggingface.co/datasets/Atnafu/Afri-MCQA)