Facial recognition is an AI-based technique for identifying or confirming an individual's identity using their face. It maps facial features from an image or video and then compares the information with a collection of known faces to find a match.




Face recognition systems store face templates for efficient matching. Once leaked, these templates pose a threat: inverting them can yield photorealistic surrogates that compromise privacy and enable impersonation. Although existing research has achieved relatively realistic face template inversion, the reconstructed facial images exhibit over-smoothed facial-part attributes (eyes, nose, mouth) and limited transferability. To address this problem, we present CLIP-FTI, a CLIP-driven fine-grained attribute conditioning framework for face template inversion. Our core idea is to use the CLIP model to obtain the semantic embeddings of facial features, in order to realize the reconstruction of specific facial feature attributes. Specifically, facial feature attribute embeddings extracted from CLIP are fused with the leaked template via a cross-modal feature interaction network and projected into the intermediate latent space of a pretrained StyleGAN. The StyleGAN generator then synthesizes face images with the same identity as the templates but with more fine-grained facial feature attributes. Experiments across multiple face recognition backbones and datasets show that our reconstructions (i) achieve higher identification accuracy and attribute similarity, (ii) recover sharper component-level attribute semantics, and (iii) improve cross-model attack transferability compared to prior reconstruction attacks. To the best of our knowledge, ours is the first method to use additional information besides the face template attack to realize face template inversion and obtains SOTA results.
Recognition of signers' emotions suffers from one theoretical challenge and one practical challenge, namely, the overlap between grammatical and affective facial expressions and the scarcity of data for model training. This paper addresses these two challenges in a cross-lingual setting using our eJSL dataset, a new benchmark dataset for emotion recognition in Japanese Sign Language signers, and BOBSL, a large British Sign Language dataset with subtitles. In eJSL, two signers expressed 78 distinct utterances with each of seven different emotional states, resulting in 1,092 video clips. We empirically demonstrate that 1) textual emotion recognition in spoken language mitigates data scarcity in sign language, 2) temporal segment selection has a significant impact, and 3) incorporating hand motion enhances emotion recognition in signers. Finally we establish a stronger baseline than spoken language LLMs.
Social interactions incorporate nonverbal signals to convey emotions alongside speech, including facial expressions and body gestures. Generative models have demonstrated promising results in creating full-body nonverbal animations synchronized with speech; however, evaluations using statistical metrics in 2D settings fail to fully capture user-perceived emotions, limiting our understanding of model effectiveness. To address this, we evaluate emotional 3D animation generative models within a Virtual Reality (VR) environment, emphasizing user-centric metrics emotional arousal realism, naturalness, enjoyment, diversity, and interaction quality in a real-time human-agent interaction scenario. Through a user study (N=48), we examine perceived emotional quality for three state of the art speech-driven 3D animation methods across two emotions happiness (high arousal) and neutral (mid arousal). Additionally, we compare these generative models against real human expressions obtained via a reconstruction-based method to assess both their strengths and limitations and how closely they replicate real human facial and body expressions. Our results demonstrate that methods explicitly modeling emotions lead to higher recognition accuracy compared to those focusing solely on speech-driven synchrony. Users rated the realism and naturalness of happy animations significantly higher than those of neutral animations, highlighting the limitations of current generative models in handling subtle emotional states. Generative models underperformed compared to reconstruction-based methods in facial expression quality, and all methods received relatively low ratings for animation enjoyment and interaction quality, emphasizing the importance of incorporating user-centric evaluations into generative model development. Finally, participants positively recognized animation diversity across all generative models.




Face anti-spoofing (FAS) is a vital component of remote biometric authentication systems based on facial recognition, increasingly used across web-based applications. Among emerging threats, video injection attacks -- facilitated by technologies such as deepfakes and virtual camera software -- pose significant challenges to system integrity. While virtual camera detection (VCD) has shown potential as a countermeasure, existing literature offers limited insight into its practical implementation and evaluation. This study introduces a machine learning-based approach to VCD, with a focus on its design and validation. The model is trained on metadata collected during sessions with authentic users. Empirical results demonstrate its effectiveness in identifying video injection attempts and reducing the risk of malicious users bypassing FAS systems.
As artificial intelligence (AI) systems become increasingly embedded in our daily life, the ability to recognize and adapt to human emotions is essential for effective human-computer interaction. Facial expression recognition (FER) provides a primary channel for inferring affective states, but the dynamic and culturally nuanced nature of emotions requires models that can learn continuously without forgetting prior knowledge. In this work, we propose a hybrid framework for FER in a continual learning setting that mitigates catastrophic forgetting. Our approach integrates two complementary modalities: deep convolutional features and facial Action Units (AUs) derived from the Facial Action Coding System (FACS). The combined representation is modelled through Bayesian Gaussian Mixture Models (BGMMs), which provide a lightweight, probabilistic solution that avoids retraining while offering strong discriminative power. Using the Compound Facial Expression of Emotion (CFEE) dataset, we show that our model can first learn basic expressions and then progressively recognize compound expressions. Experiments demonstrate improved accuracy, stronger knowledge retention, and reduced forgetting. This framework contributes to the development of emotionally intelligent AI systems with applications in education, healthcare, and adaptive user interfaces.
Responsive and accurate facial expression recognition is crucial to human-robot interaction for daily service robots. Nowadays, event cameras are becoming more widely adopted as they surpass RGB cameras in capturing facial expression changes due to their high temporal resolution, low latency, computational efficiency, and robustness in low-light conditions. Despite these advantages, event-based approaches still encounter practical challenges, particularly in adopting mainstream deep learning models. Traditional deep learning methods for facial expression analysis are energy-intensive, making them difficult to deploy on edge computing devices and thereby increasing costs, especially for high-frequency, dynamic, event vision-based approaches. To address this challenging issue, we proposed the CS3D framework by decomposing the Convolutional 3D method to reduce the computational complexity and energy consumption. Additionally, by utilizing soft spiking neurons and a spatial-temporal attention mechanism, the ability to retain information is enhanced, thus improving the accuracy of facial expression detection. Experimental results indicate that our proposed CS3D method attains higher accuracy on multiple datasets compared to architectures such as the RNN, Transformer, and C3D, while the energy consumption of the CS3D method is just 21.97\% of the original C3D required on the same device.
Continuous sign language recognition (CSLR) requires precise spatio-temporal modeling to accurately recognize sequences of gestures in videos. Existing frameworks often rely on CNN-based spatial backbones combined with temporal convolution or recurrent modules. These techniques fail in capturing fine-grained hand and facial cues and modeling long-range temporal dependencies. To address these limitations, we propose the Unified Spatio-Temporal Modeling (USTM) framework, a spatio-temporal encoder that effectively models complex patterns using a combination of a Swin Transformer backbone enhanced with lightweight temporal adapter with positional embeddings (TAPE). Our framework captures fine-grained spatial features alongside short and long-term temporal context, enabling robust sign language recognition from RGB videos without relying on multi-stream inputs or auxiliary modalities. Extensive experiments on benchmarked datasets including PHOENIX14, PHOENIX14T, and CSL-Daily demonstrate that USTM achieves state-of-the-art performance against RGB-based as well as multi-modal CSLR approaches, while maintaining competitive performance against multi-stream approaches. These results highlight the strength and efficacy of the USTM framework for CSLR. The code is available at https://github.com/gufranSabri/USTM




Facial retouching to beautify images is widely spread in social media, advertisements, and it is even applied in professional photo studios to let individuals appear younger, remove wrinkles and skin impurities. Generally speaking, this is done to enhance beauty. This is not a problem itself, but when retouched images are used as biometric samples and enrolled in a biometric system, it is one. Since previous work has proven facial retouching to be a challenge for face recognition systems,the detection of facial retouching becomes increasingly necessary. This work proposes to study and analyze changes in beauty assessment algorithms of retouched images, assesses different feature extraction methods based on artificial intelligence in order to improve retouching detection, and evaluates whether face beauty can be exploited to enhance the detection rate. In a scenario where the attacking retouching algorithm is unknown, this work achieved 1.1% D-EER on single image detection.
Suspiciousness estimation is critical for proactive threat detection and ensuring public safety in complex environments. This work introduces a large-scale annotated dataset, USE50k, along with a computationally efficient vision-based framework for real-time suspiciousness analysis. The USE50k dataset contains 65,500 images captured from diverse and uncontrolled environments, such as airports, railway stations, restaurants, parks, and other public areas, covering a broad spectrum of cues including weapons, fire, crowd density, abnormal facial expressions, and unusual body postures. Building on this dataset, we present DeepUSEvision, a lightweight and modular system integrating three key components, i.e., a Suspicious Object Detector based on an enhanced YOLOv12 architecture, dual Deep Convolutional Neural Networks (DCNN-I and DCNN-II) for facial expression and body-language recognition using image and landmark features, and a transformer-based Discriminator Network that adaptively fuses multimodal outputs to yield an interpretable suspiciousness score. Extensive experiments confirm the superior accuracy, robustness, and interpretability of the proposed framework compared to state-of-the-art approaches. Collectively, the USE50k dataset and the DeepUSEvision framework establish a strong and scalable foundation for intelligent surveillance and real-time risk assessment in safety-critical applications.
Understanding emotional responses in children with Autism Spectrum Disorder (ASD) during social interaction remains a critical challenge in both developmental psychology and human-robot interaction. This study presents a novel deep learning pipeline for emotion recognition in autistic children in response to a name-calling event by a humanoid robot (NAO), under controlled experimental settings. The dataset comprises of around 50,000 facial frames extracted from video recordings of 15 children with ASD. A hybrid model combining a fine-tuned ResNet-50-based Convolutional Neural Network (CNN) and a three-layer Graph Convolutional Network (GCN) trained on both visual and geometric features extracted from MediaPipe FaceMesh landmarks. Emotions were probabilistically labeled using a weighted ensemble of two models: DeepFace's and FER, each contributing to soft-label generation across seven emotion classes. Final classification leveraged a fused embedding optimized via Kullback-Leibler divergence. The proposed method demonstrates robust performance in modeling subtle affective responses and offers significant promise for affective profiling of ASD children in clinical and therapeutic human-robot interaction contexts, as the pipeline effectively captures micro emotional cues in neurodivergent children, addressing a major gap in autism-specific HRI research. This work represents the first such large-scale, real-world dataset and pipeline from India on autism-focused emotion analysis using social robotics, contributing an essential foundation for future personalized assistive technologies.