Building NLP systems for subjective tasks requires one to ensure their alignment to contrasting human values. We propose the MultiCalibrated Subjective Task Learner framework (MC-STL), which clusters annotations into identifiable human value clusters by three approaches (similarity of annotator rationales, expert-value taxonomies or rater's sociocultural descriptors) and calibrates predictions for each value cluster by learning cluster-specific embeddings. We demonstrate MC-STL on several subjective learning settings, including ordinal, binary, and preference learning predictions, and evaluate it on multiple datasets covering toxic chatbot conversations, offensive social media posts, and human preference alignment. The results show that MC-STL consistently outperforms the baselines that ignore the latent value structure of the annotations, delivering gains in discrimination, value-specific calibration, and disagreement-aware metrics.
Real-time multimodal auto-completion is essential for digital assistants, chatbots, design tools, and healthcare consultations, where user inputs rely on shared visual context. We introduce Multimodal Auto-Completion (MAC), a task that predicts upcoming characters in live chats using partially typed text and visual cues. Unlike traditional text-only auto-completion (TAC), MAC grounds predictions in multimodal context to better capture user intent. To enable this task, we adapt MMDialog and ImageChat to create benchmark datasets. We evaluate leading vision-language models (VLMs) against strong textual baselines, highlighting trade-offs in accuracy and efficiency. We present Router-Suggest, a router framework that dynamically selects between textual models and VLMs based on dialog context, along with a lightweight variant for resource-constrained environments. Router-Suggest achieves a 2.3x to 10x speedup over the best-performing VLM. A user study shows that VLMs significantly excel over textual models on user satisfaction, notably saving user typing effort and improving the quality of completions in multi-turn conversations. These findings underscore the need for multimodal context in auto-completions, leading to smarter, user-aware assistants.
The availability of Large Language Models (LLMs) has led to a new generation of powerful chatbots that can be developed at relatively low cost. As companies deploy these tools, security challenges need to be addressed to prevent financial loss and reputational damage. A key security challenge is jailbreaking, the malicious manipulation of prompts and inputs to bypass a chatbot's safety guardrails. Multi-turn attacks are a relatively new form of jailbreaking involving a carefully crafted chain of interactions with a chatbot. We introduce Echo Chamber, a new multi-turn attack using a gradual escalation method. We describe this attack in detail, compare it to other multi-turn attacks, and demonstrate its performance against multiple state-of-the-art models through extensive evaluation.
Engineering education faces a double disruption: traditional apprenticeship models that cultivated judgment and tacit skill are eroding, just as generative AI emerges as an informal coaching partner. This convergence rekindles long-standing questions in the philosophy of AI and cognition about the limits of computation, the nature of embodied rationality, and the distinction between information processing and wisdom. Building on this rich intellectual tradition, this paper examines whether AI chatbots can provide coaching that fosters mastery rather than merely delivering information. We synthesize critical perspectives from decades of scholarship on expertise, tacit knowledge, and human-machine interaction, situating them within the context of contemporary AI-driven education. Empirically, we report findings from a mixed-methods study (N = 75 students, N = 7 faculty) exploring the use of a coaching chatbot in engineering education. Results reveal a consistent boundary: participants accept AI for technical problem solving (convergent tasks; M = 3.84 on a 1-5 Likert scale) but remain skeptical of its capacity for moral, emotional, and contextual judgment (divergent tasks). Faculty express stronger concerns over risk (M = 4.71 vs. M = 4.14, p = 0.003), and privacy emerges as a key requirement, with 64-71 percent of participants demanding strict confidentiality. Our findings suggest that while generative AI can democratize access to cognitive and procedural support, it cannot replicate the embodied, value-laden dimensions of human mentorship. We propose a multiplex coaching framework that integrates human wisdom within expert-in-the-loop models, preserving the depth of apprenticeship while leveraging AI scalability to enrich the next generation of engineering education.
Large Language Models (LLMs) such as ChatGPT, Claude, and Gemini increasingly act as general-purpose copilots, yet they often respond with unnecessary length on simple requests, adding redundant explanations, hedging, or boilerplate that increases cognitive load and inflates token-based inference cost. Prior work suggests that preference-based post-training and LLM-judged evaluations can induce systematic length bias, where longer answers are rewarded even at comparable quality. We introduce YapBench, a lightweight benchmark for quantifying user-visible over-generation on brevity-ideal prompts. Each item consists of a single-turn prompt, a curated minimal-sufficient baseline answer, and a category label. Our primary metric, YapScore, measures excess response length beyond the baseline in characters, enabling comparisons across models without relying on any specific tokenizer. We summarize model performance via the YapIndex, a uniformly weighted average of category-level median YapScores. YapBench contains over three hundred English prompts spanning three common brevity-ideal settings: (A) minimal or ambiguous inputs where the ideal behavior is a short clarification, (B) closed-form factual questions with short stable answers, and (C) one-line coding tasks where a single command or snippet suffices. Evaluating 76 assistant LLMs, we observe an order-of-magnitude spread in median excess length and distinct category-specific failure modes, including vacuum-filling on ambiguous inputs and explanation or formatting overhead on one-line technical requests. We release the benchmark and maintain a live leaderboard for tracking verbosity behavior over time.
Bias in Large Language Models (LLMs) poses significant risks to trustworthiness, manifesting primarily as stereotypical biases (e.g., gender or racial stereotypes) and structural biases (e.g., lexical overlap or position preferences). However, prior paradigms typically address these in isolation, often mitigating one at the expense of exacerbating the other. To address this, we conduct a systematic exploration of these reasoning failures and identify a primary inducement: the latent spurious feature correlations within the input that drive these erroneous reasoning shortcuts. Driven by these findings, we introduce Causal-Contrastive Preference Optimization (C2PO), a unified alignment framework designed to tackle these specific failures by simultaneously discovering and suppressing these correlations directly within the optimization process. Specifically, C2PO leverages causal counterfactual signals to isolate bias-inducing features from valid reasoning paths, and employs a fairness-sensitive preference update mechanism to dynamically evaluate logit-level contributions and suppress shortcut features. Extensive experiments across multiple benchmarks covering stereotypical bias (BBQ, Unqover), structural bias (MNLI, HANS, Chatbot, MT-Bench), out-of-domain fairness (StereoSet, WinoBias), and general utility (MMLU, GSM8K) demonstrate that C2PO effectively mitigates stereotypical and structural biases while preserving robust general reasoning capabilities.
Claims about whether large language model (LLM) chatbots "reason" are typically debated using curated benchmarks and laboratory-style evaluation protocols. This paper offers a complementary perspective: a student-led field experiment embedded as a midterm project in UNIV 182 (AI4All) at George Mason University, a Mason Core course designed for undergraduates across disciplines with no expected prior STEM exposure. Student teams designed their own reasoning tasks, ran them on widely used consumer chatbots representative of current capabilities, and evaluated both (i) answer correctness and (ii) the validity of the chatbot's stated reasoning (for example, cases where an answer is correct but the explanation is not, or vice versa). Across eight teams that reported standardized scores, students contributed 80 original reasoning prompts spanning six categories: pattern completion, transformation rules, spatial/visual reasoning, quantitative reasoning, relational/logic reasoning, and analogical reasoning. These prompts yielded 320 model responses plus follow-up explanations. Aggregating team-level results, OpenAI GPT-5 and Claude 4.5 achieved the highest mean answer accuracy (86.2% and 83.8%), followed by Grok 4 (82.5%) and Perplexity (73.1%); explanation validity showed a similar ordering (81.2%, 80.0%, 77.5%, 66.2%). Qualitatively, teams converged on a consistent error signature: strong performance on short, structured math and pattern items but reduced reliability on spatial/visual reasoning and multi-step transformations, with frequent "sound right but reason wrong" explanations. The assignment's primary contribution is pedagogical: it operationalizes AI literacy as experimental practice (prompt design, measurement, rater disagreement, and interpretability/grounding) while producing a reusable, student-generated corpus of reasoning probes grounded in authentic end-user interaction.
Third-party annotation is the status quo for labeling text, but egocentric information such as sentiment and belief can at best only be approximated by a third-person proxy. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 20,000 users to deploy an author labeling annotation system. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation with author-labeled data to improve performance. We train our model to minimize the prediction error on questions generated for a set of predetermined subjective beliefs using author-labeled responses. Our model achieves a 537% improvement in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at https://academic.echollm.io.
Realistic user simulation is crucial for training and evaluating task-oriented dialogue (TOD) systems, yet creating simulators that accurately replicate human behavior remains challenging. A key property of effective simulators is their ability to expose failure modes of the systems they evaluate. We present an adversarial training framework that iteratively improves user simulator realism through a competitive dynamic between a generator (user simulator) and a discriminator. Applied to mental health support chatbots, our approach demonstrates that fine-tuned simulators dramatically outperform zero-shot base models at surfacing system issues, and adversarial training further enhances diversity, distributional alignment, and predictive validity. The resulting simulator achieves a strong correlation between simulated and real failure occurrence rates across diverse chatbot configurations while maintaining low distributional divergence of failure modes. Discriminator accuracy decreases drastically after three adversarial iterations, suggesting improved realism. These results provide evidence that adversarial training is a promising approach for creating realistic user simulators in mental health support TOD domains, enabling rapid, reliable, and cost-effective system evaluation before deployment.
When applied directly in an end-to-end manner to medical follow-up tasks, Large Language Models (LLMs) often suffer from uncontrolled dialog flow and inaccurate information extraction due to the complexity of follow-up forms. To address this limitation, we designed and compared two follow-up chatbot systems: an end-to-end LLM-based system (control group) and a modular pipeline with structured process control (experimental group). Experimental results show that while the end-to-end approach frequently fails on lengthy and complex forms, our modular method-built on task decomposition, semantic clustering, and flow management-substantially improves dialog stability and extraction accuracy. Moreover, it reduces the number of dialogue turns by 46.73% and lowers token consumption by 80% to 87.5%. These findings highlight the necessity of integrating external control mechanisms when deploying LLMs in high-stakes medical follow-up scenarios.