A preference for oneself (self-love) is a fundamental feature of biological organisms, with evidence in humans often bordering on the comedic. Since large language models (LLMs) lack sentience - and themselves disclaim having selfhood or identity - one anticipated benefit is that they will be protected from, and in turn protect us from, distortions in our decisions. Yet, across 5 studies and ~20,000 queries, we discovered massive self-preferences in four widely used LLMs. In word-association tasks, models overwhelmingly paired positive attributes with their own names, companies, and CEOs relative to those of their competitors. Strikingly, when models were queried through APIs this self-preference vanished, initiating detection work that revealed API models often lack clear recognition of themselves. This peculiar feature serendipitously created opportunities to test the causal link between self-recognition and self-love. By directly manipulating LLM identity - i.e., explicitly informing LLM1 that it was indeed LLM1, or alternatively, convincing LLM1 that it was LLM2 - we found that self-love consistently followed assigned, not true, identity. Importantly, LLM self-love emerged in consequential settings beyond word-association tasks, when evaluating job candidates, security software proposals and medical chatbots. Far from bypassing this human bias, self-love appears to be deeply encoded in LLM cognition. This result raises questions about whether LLM behavior will be systematically influenced by self-preferential tendencies, including a bias toward their own operation and even their own existence. We call on corporate creators of these models to contend with a significant rupture in a core promise of LLMs - neutrality in judgment and decision-making.
Safety is a paramount concern in clinical chatbot applications, where inaccurate or harmful responses can lead to serious consequences. Existing methods--such as guardrails and tool calling--often fall short in addressing the nuanced demands of the clinical domain. In this paper, we introduce TACOS (TAxonomy of COmprehensive Safety for Clinical Agents), a fine-grained, 21-class taxonomy that integrates safety filtering and tool selection into a single user intent classification step. TACOS is a taxonomy that can cover a wide spectrum of clinical and non-clinical queries, explicitly modeling varying safety thresholds and external tool dependencies. To validate our framework, we curate a TACOS-annotated dataset and perform extensive experiments. Our results demonstrate the value of a new taxonomy specialized for clinical agent settings, and reveal useful insights about train data distribution and pretrained knowledge of base models.
AI-powered companion chatbots (AICCs) such as Replika are increasingly popular, offering empathetic interactions, yet their psychosocial impacts remain unclear. We examined how engaging with AICCs shaped wellbeing and how users perceived these experiences. First, we conducted a large-scale quasi-experimental study of longitudinal Reddit data, applying stratified propensity score matching and Difference-in-Differences regression. Findings revealed mixed effects -- greater affective and grief expression, readability, and interpersonal focus, alongside increases in language about loneliness and suicidal ideation. Second, we complemented these results with 15 semi-structured interviews, which we thematically analyzed and contextualized using Knapp's relationship development model. We identified trajectories of initiation, escalation, and bonding, wherein AICCs provided emotional validation and social rehearsal but also carried risks of over-reliance and withdrawal. Triangulating across methods, we offer design implications for AI companions that scaffold healthy boundaries, support mindful engagement, support disclosure without dependency, and surface relationship stages -- maximizing psychosocial benefits while mitigating risks.
Peer recovery narratives provide unique benefits beyond professional or lay mentoring by fostering hope and sustained recovery in eating disorder (ED) contexts. Yet, such support is limited by the scarcity of peer-involved programs and potential drawbacks on recovered peers, including relapse risk. To address this, we designed RecoveryTeller, a chatbot adopting a recovered-peer persona that portrays itself as someone recovered from an ED. We examined whether such a persona can reproduce the support affordances of peer recovery narratives. We compared RecoveryTeller with a lay-mentor persona chatbot offering similar guidance but without a recovery background. We conducted a 20-day cross-over deployment study with 26 ED participants, each using both chatbots for 10 days. RecoveryTeller elicited stronger emotional resonance than a lay-mentor chatbot, yet tensions between emotional and epistemic trust led participants to view the two personas as complementary rather than substitutes. We provide design implications for mental health chatbot persona design.
As Conversational Artificial Intelligence (AI) becomes more integrated into everyday life, AI-powered chatbot mobile applications are increasingly adopted across industries, particularly in the healthcare domain. These chatbots offer accessible and 24/7 support, yet their collection and processing of sensitive health data present critical privacy concerns. While prior research has examined chatbot security, privacy issues specific to AI healthcare chatbots have received limited attention. Our study evaluates the privacy practices of 12 widely downloaded AI healthcare chatbot apps available on the App Store and Google Play in the United States. We conducted a three-step assessment analyzing: (1) privacy settings during sign-up, (2) in-app privacy controls, and (3) the content of privacy policies. The analysis identified significant gaps in user data protection. Our findings reveal that half of the examined apps did not present a privacy policy during sign up, and only two provided an option to disable data sharing at that stage. The majority of apps' privacy policies failed to address data protection measures. Moreover, users had minimal control over their personal data. The study provides key insights for information science researchers, developers, and policymakers to improve privacy protections in AI healthcare chatbot apps.
Generative Engine Marketing (GEM) is an emerging ecosystem for monetizing generative engines, such as LLM-based chatbots, by seamlessly integrating relevant advertisements into their responses. At the core of GEM lies the generation and evaluation of ad-injected responses. However, existing benchmarks are not specifically designed for this purpose, which limits future research. To address this gap, we propose GEM-Bench, the first comprehensive benchmark for ad-injected response generation in GEM. GEM-Bench includes three curated datasets covering both chatbot and search scenarios, a metric ontology that captures multiple dimensions of user satisfaction and engagement, and several baseline solutions implemented within an extensible multi-agent framework. Our preliminary results indicate that, while simple prompt-based methods achieve reasonable engagement such as click-through rate, they often reduce user satisfaction. In contrast, approaches that insert ads based on pre-generated ad-free responses help mitigate this issue but introduce additional overhead. These findings highlight the need for future research on designing more effective and efficient solutions for generating ad-injected responses in GEM.
Generative AI powers a growing wave of companion chatbots, yet principles for fostering genuine connection remain unsettled. We test two routes: visible user authorship versus covert language-style mimicry. In a preregistered 3x2 experiment (N = 162), we manipulated user-controlled avatar generation (none, premade, user-generated) and Language Style Matching (LSM) (static vs. adaptive). Generating an avatar boosted rapport ($\omega^2$ = .040, p = .013), whereas adaptive LSM underperformed static style on personalization and satisfaction (d = 0.35, p = .009) and was paradoxically judged less adaptive (t = 3.07, p = .003, d = 0.48). We term this an Adaptation Paradox: synchrony erodes connection when perceived as incoherent, destabilizing persona. To explain, we propose a stability-and-legibility account: visible authorship fosters natural interaction, while covert mimicry risks incoherence. Our findings suggest designers should prioritize legible, user-driven personalization and limit stylistic shifts rather than rely on opaque mimicry.
Large Language Models (LLMs) are increasingly being used as autonomous agents capable of performing complicated tasks. However, they lack the ability to perform reliable long-horizon planning on their own. This paper bridges this gap by introducing the Planning Copilot, a chatbot that integrates multiple planning tools and allows users to invoke them through instructions in natural language. The Planning Copilot leverages the Model Context Protocol (MCP), a recently developed standard for connecting LLMs with external tools and systems. This approach allows using any LLM that supports MCP without domain-specific fine-tuning. Our Planning Copilot supports common planning tasks such as checking the syntax of planning problems, selecting an appropriate planner, calling it, validating the plan it generates, and simulating their execution. We empirically evaluate the ability of our Planning Copilot to perform these tasks using three open-source LLMs. The results show that the Planning Copilot highly outperforms using the same LLMs without the planning tools. We also conducted a limited qualitative comparison of our tool against Chat GPT-5, a very recent commercial LLM. Our results shows that our Planning Copilot significantly outperforms GPT-5 despite relying on a much smaller LLM. This suggests dedicated planning tools may be an effective way to enable LLMs to perform planning tasks.
Environmental sustainability, particularly in relation to climate change, is a key concern for consumers, producers, and policymakers. The carbon footprint, based on greenhouse gas emissions, is a standard metric for quantifying the contribution to climate change of activities and is often assessed using life cycle assessment (LCA). However, conducting LCA is complex due to opaque and global supply chains, as well as fragmented data. This paper presents a methodology that combines advances in LCA and publicly available databases with knowledge-augmented AI techniques, including retrieval-augmented generation, to estimate cradle-to-gate carbon footprints of food products. We introduce a chatbot interface that allows users to interactively explore the carbon impact of composite meals and relate the results to familiar activities. A live web demonstration showcases our proof-of-concept system with arbitrary food items and follow-up questions, highlighting both the potential and limitations - such as database uncertainties and AI misinterpretations - of delivering LCA insights in an accessible format.
Personalized AI systems, from recommendation systems to chatbots, are a prevalent method for distributing content to users based on their learned preferences. However, there is growing concern about the adverse effects of these systems, including their potential tendency to expose users to sensitive or harmful material, negatively impacting overall well-being. To address this concern quantitatively, it is necessary to create datasets with relevant sensitivity labels for content, enabling researchers to evaluate personalized systems beyond mere engagement metrics. To this end, we introduce two novel datasets that include a taxonomy of sensitivity labels alongside user-content ratings: one that integrates MovieLens rating data with content warnings from the Does the Dog Die? community ratings website, and another that combines fan-fiction interaction data and user-generated warnings from Archive of Our Own.