Abstract:Machine learning models for clinical prediction rely on structured data extracted from Electronic Medical Records (EMRs), yet this process remains dominated by hardcoded, database-specific pipelines for cohort definition, feature selection, and code mapping. These manual efforts limit scalability, reproducibility, and cross-institutional generalization. To address this, we introduce EMR-AGENT (Automated Generalized Extraction and Navigation Tool), an agent-based framework that replaces manual rule writing with dynamic, language model-driven interaction to extract and standardize structured clinical data. Our framework automates cohort selection, feature extraction, and code mapping through interactive querying of databases. Our modular agents iteratively observe query results and reason over schema and documentation, using SQL not just for data retrieval but also as a tool for database observation and decision making. This eliminates the need for hand-crafted, schema-specific logic. To enable rigorous evaluation, we develop a benchmarking codebase for three EMR databases (MIMIC-III, eICU, SICdb), including both seen and unseen schema settings. Our results demonstrate strong performance and generalization across these databases, highlighting the feasibility of automating a process previously thought to require expert-driven design. The code will be released publicly at https://github.com/AITRICS/EMR-AGENT/tree/main. For a demonstration, please visit our anonymous demo page: https://anonymoususer-max600.github.io/EMR_AGENT/
Abstract:Recent advances in Large Language Models (LLMs) have brought significant improvements to various service domains, including chatbots and medical pre-consultation applications. In the healthcare domain, the most common approach for adapting LLMs to multi-turn dialogue generation is Supervised Fine-Tuning (SFT). However, datasets for SFT in tasks like medical pre-consultation typically exhibit a skewed turn-count distribution. Training on such data induces a novel failure mechanism we term **Format Inertia**, where models tend to generate repetitive, format-correct, but diagnostically uninformative questions in long medical dialogues. To mitigate this observed failure mechanism, we adopt a simple, data-centric method that rebalances the turn-count distribution of the training dataset. Experimental results show that our approach substantially alleviates Format Inertia in medical pre-consultation.
Abstract:Safety is a paramount concern in clinical chatbot applications, where inaccurate or harmful responses can lead to serious consequences. Existing methods--such as guardrails and tool calling--often fall short in addressing the nuanced demands of the clinical domain. In this paper, we introduce TACOS (TAxonomy of COmprehensive Safety for Clinical Agents), a fine-grained, 21-class taxonomy that integrates safety filtering and tool selection into a single user intent classification step. TACOS is a taxonomy that can cover a wide spectrum of clinical and non-clinical queries, explicitly modeling varying safety thresholds and external tool dependencies. To validate our framework, we curate a TACOS-annotated dataset and perform extensive experiments. Our results demonstrate the value of a new taxonomy specialized for clinical agent settings, and reveal useful insights about train data distribution and pretrained knowledge of base models.
Abstract:This study proposes DeltaSHAP, a novel explainable artificial intelligence (XAI) algorithm specifically designed for online patient monitoring systems. In clinical environments, discovering the causes driving patient risk evolution is critical for timely intervention, yet existing XAI methods fail to address the unique requirements of clinical time series explanation tasks. To this end, DeltaSHAP addresses three key clinical needs: explaining the changes in the consecutive predictions rather than isolated prediction scores, providing both magnitude and direction of feature attributions, and delivering these insights in real time. By adapting Shapley values to temporal settings, our approach accurately captures feature coalition effects. It further attributes prediction changes using only the actually observed feature combinations, making it efficient and practical for time-sensitive clinical applications. We also introduce new evaluation metrics to evaluate the faithfulness of the attributions for online time series, and demonstrate through experiments on online patient monitoring tasks that DeltaSHAP outperforms state-of-the-art XAI methods in both explanation quality as 62% and computational efficiency as 33% time reduction on the MIMIC-III decompensation benchmark. We release our code at https://github.com/AITRICS/DeltaSHAP.
Abstract:Recent explainable artificial intelligence (XAI) methods for time series primarily estimate point-wise attribution magnitudes, while overlooking the directional impact on predictions, leading to suboptimal identification of significant points. Our analysis shows that conventional Integrated Gradients (IG) effectively capture critical points with both positive and negative impacts on predictions. However, current evaluation metrics fail to assess this capability, as they inadvertently cancel out opposing feature contributions. To address this limitation, we propose novel evaluation metrics-Cumulative Prediction Difference (CPD) and Cumulative Prediction Preservation (CPP)-to systematically assess whether attribution methods accurately identify significant positive and negative points in time series XAI. Under these metrics, conventional IG outperforms recent counterparts. However, directly applying IG to time series data may lead to suboptimal outcomes, as generated paths ignore temporal relationships and introduce out-of-distribution samples. To overcome these challenges, we introduce TIMING, which enhances IG by incorporating temporal awareness while maintaining its theoretical properties. Extensive experiments on synthetic and real-world time series benchmarks demonstrate that TIMING outperforms existing time series XAI baselines. Our code is available at https://github.com/drumpt/TIMING.
Abstract:Large language models have demonstrated remarkable proficiency in long and complex reasoning tasks. However, they frequently exhibit a problematic reliance on familiar reasoning patterns, a phenomenon we term \textit{reasoning rigidity}. Despite explicit instructions from users, these models often override clearly stated conditions and default to habitual reasoning trajectories, leading to incorrect conclusions. This behavior presents significant challenges, particularly in domains such as mathematics and logic puzzle, where precise adherence to specified constraints is critical. To systematically investigate reasoning rigidity, a behavior largely unexplored in prior work, we introduce a expert-curated diagnostic set, \dataset{}. Our dataset includes specially modified variants of existing mathematical benchmarks, namely AIME and MATH500, as well as well-known puzzles deliberately redesigned to require deviation from familiar reasoning strategies. Using this dataset, we identify recurring contamination patterns that occur when models default to ingrained reasoning. Specifically, we categorize this contamination into three distinctive modes: (i) Interpretation Overload, (ii) Input Distrust, and (iii) Partial Instruction Attention, each causing models to ignore or distort provided instructions. We publicly release our diagnostic set to facilitate future research on mitigating reasoning rigidity in language models.
Abstract:Despite recent advances in diffusion models, achieving reliable image generation and editing remains challenging due to the inherent diversity induced by stochastic noise in the sampling process. Instruction-guided image editing with diffusion models offers user-friendly capabilities, yet editing failures, such as background distortion, frequently occur. Users often resort to trial and error, adjusting seeds or prompts to achieve satisfactory results, which is inefficient. While seed selection methods exist for Text-to-Image (T2I) generation, they depend on external verifiers, limiting applicability, and evaluating multiple seeds increases computational complexity. To address this, we first establish a multiple-seed-based image editing baseline using background consistency scores, achieving Best-of-N performance without supervision. Building on this, we introduce ELECT (Early-timestep Latent Evaluation for Candidate Selection), a zero-shot framework that selects reliable seeds by estimating background mismatches at early diffusion timesteps, identifying the seed that retains the background while modifying only the foreground. ELECT ranks seed candidates by a background inconsistency score, filtering unsuitable samples early based on background consistency while preserving editability. Beyond standalone seed selection, ELECT integrates into instruction-guided editing pipelines and extends to Multimodal Large-Language Models (MLLMs) for joint seed and prompt selection, further improving results when seed selection alone is insufficient. Experiments show that ELECT reduces computational costs (by 41 percent on average and up to 61 percent) while improving background consistency and instruction adherence, achieving around 40 percent success rates in previously failed cases - without any external supervision or training.
Abstract:Linker generation is critical in drug discovery applications such as lead optimization and PROTAC design, where molecular fragments are assembled into diverse drug candidates. Existing methods fall into PC-Free and PC-Aware categories based on their use of 3D point clouds (PC). PC-Free models prioritize diversity but suffer from lower validity due to overlooking PC constraints, while PC-Aware models ensure higher validity but restrict diversity by enforcing strict PC constraints. To overcome these trade-offs without additional training, we propose HybridLinker, a framework that enhances PC-Aware inference by providing diverse bonding topologies from a pretrained PC-Free model as guidance. At its core, we propose LinkerDPS, the first diffusion posterior sampling (DPS) method operating across PC-Free and PC-Aware spaces, bridging molecular topology with 3D point clouds via an energy-inspired function. By transferring the diverse sampling distribution of PC-Free models into the PC-Aware distribution, HybridLinker significantly and consistently surpasses baselines, improving both validity and diversity in foundational molecular design and applied property optimization tasks, establishing a new DPS framework in the molecular and graph domains beyond imaging.




Abstract:With the emergence of Mixture-of-Experts (MoE), the efficient scaling of model size has accelerated the development of large language models in recent years. However, their high memory requirements prevent their use in resource-constrained environments. While knowledge distillation (KD) has been a proven method for model compression, its application to MoE teacher models remains underexplored. Through our investigation, we discover that non-activated experts in MoE models possess valuable knowledge that benefits student models. We further demonstrate that existing KD methods are not optimal for compressing MoE models, as they fail to leverage this knowledge effectively. To address this, we propose two intuitive MoE-specific KD methods for the first time: Knowledge Augmentation (KA) and Student-Aware Router (SAR), both designed to effectively extract knowledge from all experts. Specifically, KA augments knowledge by sampling experts multiple times, while SAR uses all experts and adjusts the expert weights through router training to provide optimal knowledge. Extensive experiments show that our methods outperform conventional KD methods, demonstrating their effectiveness for MoE teacher models.




Abstract:Speculative decoding has been widely used to accelerate autoregressive (AR) text generation. However, its effectiveness in visual AR models remains limited due to token selection ambiguity, where multiple tokens receive similarly low probabilities, reducing acceptance rates. While dynamic tree drafting has been proposed to improve speculative decoding, we show that it fails to mitigate token selection ambiguity, resulting in shallow draft trees and suboptimal acceleration. To address this, we introduce LANTERN++, a novel framework that integrates static tree drafting with a relaxed acceptance condition, allowing drafts to be selected independently of low-confidence predictions. This enables deeper accepted sequences, improving decoding efficiency while preserving image quality. Extensive experiments on state-of-the-art visual AR models demonstrate that LANTERN++ significantly accelerates inference, achieving up to $\mathbf{\times 2.56}$ speedup over standard AR decoding while maintaining high image quality.