The status quo for labeling text is third-party annotation, but there are many cases where information directly from the document's source would be preferable over a third-person proxy, especially for egocentric features like sentiment and belief. We introduce author labeling, an annotation technique where the writer of the document itself annotates the data at the moment of creation. We collaborate with a commercial chatbot with over 10,000 users to deploy an author labeling annotation system for subjective features related to product recommendation. This system identifies task-relevant queries, generates on-the-fly labeling questions, and records authors' answers in real time. We train and deploy an online-learning model architecture for product recommendation that continuously improves from author labeling and find it achieved a 534% increase in click-through rate compared to an industry advertising baseline running concurrently. We then compare the quality and practicality of author labeling to three traditional annotation approaches for sentiment analysis and find author labeling to be higher quality, faster to acquire, and cheaper. These findings reinforce existing literature that annotations, especially for egocentric and subjective beliefs, are significantly higher quality when labeled by the author rather than a third party. To facilitate broader scientific adoption, we release an author labeling service for the research community at academic.echollm.io.
Recent advances in Generative AI (GAI) have led to new opportunities for creativity support. However, this technology has raised ethical concerns in the visual artists community. This paper explores how GAI can assist visual artists in developing original characters (OCs) while respecting their creative agency. We present ORIBA, an AI chatbot leveraging large language models (LLMs) to enable artists to role-play with their OCs, focusing on conceptualization (e.g., backstories) while leaving exposition (visual creation) to creators. Through a study with 14 artists, we found ORIBA motivated artists' imaginative engagement, developing multidimensional attributes and stronger bonds with OCs that inspire their creative process. Our contributions include design insights for AI systems that develop from artists' perspectives, demonstrating how LLMs can support cross-modal creativity while preserving creative agency in OC art. This paper highlights the potential of GAI as a neutral, non-visual support that strengthens existing creative practice, without infringing artistic exposition.
The Model Context Protocol (MCP) has emerged as the de facto standard for connecting Large Language Models (LLMs) to external data and tools, effectively functioning as the "USB-C for Agentic AI." While this decoupling of context and execution solves critical interoperability challenges, it introduces a profound new threat landscape where the boundary between epistemic errors (hallucinations) and security breaches (unauthorized actions) dissolves. This Systematization of Knowledge (SoK) aims to provide a comprehensive taxonomy of risks in the MCP ecosystem, distinguishing between adversarial security threats (e.g., indirect prompt injection, tool poisoning) and epistemic safety hazards (e.g., alignment failures in distributed tool delegation). We analyze the structural vulnerabilities of MCP primitives, specifically Resources, Prompts, and Tools, and demonstrate how "context" can be weaponized to trigger unauthorized operations in multi-agent environments. Furthermore, we survey state-of-the-art defenses, ranging from cryptographic provenance (ETDI) to runtime intent verification, and conclude with a roadmap for securing the transition from conversational chatbots to autonomous agentic operating systems.
LLM-as-judge evaluation has become the de facto standard for scaling model assessment, but the practice is statistically unsound: uncalibrated scores can invert preferences, naive confidence intervals on uncalibrated scores achieve near-0% coverage, and importance-weighted estimators collapse under limited overlap despite high effective sample size (ESS). We introduce Causal Judge Evaluation (CJE), a framework that fixes all three failures. On n=4,961 Chatbot Arena prompts (after filtering from 5k), CJE achieves 99% pairwise ranking accuracy at full sample size (94% averaged across configurations), matching oracle quality, at 14x lower cost (for ranking 5 policies) by calibrating a 16x cheaper judge on just 5% oracle labels (~250 labels). CJE combines three components: (i) AutoCal-R, reward calibration via mean-preserving isotonic regression; (ii) SIMCal-W, weight stabilization via stacking of S-monotone candidates; and (iii) Oracle-Uncertainty Aware (OUA) inference that propagates calibration uncertainty into confidence intervals. We formalize the Coverage-Limited Efficiency (CLE) diagnostic, which explains why IPS-style estimators fail even when ESS exceeds 90%: the logger rarely visits regions where target policies concentrate. Key findings: SNIPS inverts rankings even with reward calibration (38% pairwise, negative Kendall's tau) due to weight instability; calibrated IPS remains near-random (47%) despite weight stabilization, consistent with CLE; OUA improves coverage from near-0% to ~86% (Direct) and ~96% (stacked-DR), where naive intervals severely under-cover.
This paper presents a psychologically-aware conversational agent designed to enhance both learning performance and emotional well-being in educational settings. The system combines Large Language Models (LLMs), a knowledge graph-enhanced BERT (KG-BERT), and a bidirectional Long Short-Term Memory (LSTM) with attention to classify students' cognitive and affective states in real time. Unlike prior chatbots limited to either tutoring or affective support, our approach leverages multimodal data-including textual semantics, prosodic speech features, and temporal behavioral trends-to infer engagement, stress, and conceptual understanding. A pilot study with university students demonstrated improved motivation, reduced stress, and moderate academic gains compared to baseline methods. These results underline the promise of integrating semantic reasoning, multimodal fusion, and temporal modeling to support adaptive, student-centered educational interventions.
Language identification is a crucial first step in multilingual systems such as chatbots and virtual assistants, enabling linguistically and culturally accurate user experiences. Errors at this stage can cascade into downstream failures, setting a high bar for accuracy. Yet, existing language identification tools struggle with key cases -- such as music requests where the song title and user language differ. Open-source tools like LangDetect, FastText are fast but less accurate, while large language models, though effective, are often too costly for low-latency or low-resource settings. We introduce PolyLingua, a lightweight Transformer-based model for in-domain language detection and fine-grained language classification. It employs a two-level contrastive learning framework combining instance-level separation and class-level alignment with adaptive margins, yielding compact and well-separated embeddings even for closely related languages. Evaluated on two challenging datasets -- Amazon Massive (multilingual digital assistant utterances) and a Song dataset (music requests with frequent code-switching) -- PolyLingua achieves 99.25% F1 and 98.15% F1, respectively, surpassing Sonnet 3.5 while using 10x fewer parameters, making it ideal for compute- and latency-constrained environments.
The Poultry industry plays a vital role in global food security, yet small- and medium-scale farmers frequently lack timely access to expert-level support for disease diagnosis, nutrition planning, and management decisions. With rising climate stress, unpredictable feed prices, and persistent disease threats, poultry producers often struggle to make quick, informed decisions. Therefore, there is a critical need for intelligent, data-driven systems that can deliver reliable, on-demand consultation. This paper presents PoultryTalk, a novel multi-modal Retrieval-Augmented Generation (RAG) system designed to provide real-time expert guidance through text and image-based interaction. PoultryTalk uses OpenAI's text-embedding-3-small and GPT-4o to provide smart, context-aware poultry management advice from text, images, or questions. System usability and performance were evaluated using 200 expert-verified queries and feedback from 34 participants who submitted 267 queries to the PoultryTalk prototype. The expert-verified benchmark queries confirmed strong technical performance, achieving a semantic similarity of 84.0% and an average response latency of 3.6 seconds. Compared with OpenAI's GPT-4o, PoultryTalk delivered more accurate and reliable information related to poultry. Based on participants' evaluations, PoultryTalk achieved a response accuracy of 89.9%, with about 9.1% of responses rated as incorrect. A post-use survey indicated high user satisfaction: 95.6% of participants reported that the chatbot provided "always correct" and "mostly correct" answers. 82.6% indicated they would recommend the tool, and 17.4% responded "maybe." These results collectively demonstrate that PoultryTalk not only delivers accurate, contextually relevant information but also demonstrates strong user acceptance and scalability potential.
Retrieval-augmented generation (RAG) has rapidly emerged as a transformative approach for integrating large language models into clinical and biomedical workflows. However, privacy risks, such as protected health information (PHI) exposure, remain inconsistently mitigated. This review provides a thorough analysis of the current landscape of RAG applications in healthcare, including (i) sensitive data type across clinical scenarios, (ii) the associated privacy risks, (iii) current and emerging data-privacy protection mechanisms and (iv) future direction for patient data privacy protection. We synthesize 23 articles on RAG applications in healthcare and systematically analyze privacy challenges through a pipeline-structured framework encompassing data storage, transmission, retrieval and generation stages, delineating potential failure modes, their underlying causes in threat models and system mechanisms, and their practical implications. Building on this analysis, we critically review 17 articles on privacy-preserving strategies for RAG systems. Our evaluation reveals critical gaps, including insufficient clinical validation, absence of standardized evaluation frameworks, and lack of automated assessment tools. We propose actionable directions based on these limitations and conclude with a call to action. This review provides researchers and practitioners with a structured framework for understanding privacy vulnerabilities in healthcare RAG and offers a roadmap toward developing systems that achieve both clinical effectiveness and robust privacy preservation.
We present online learning of Hierarchical Task Network (HTN) methods in the context of integrated HTN planning and LLM-based chatbots. Methods indicate when and how to decompose tasks into subtasks. Our method learner is built on top of the ChatHTN planner. ChatHTN queries ChatGPT to generate a decomposition of a task into primitive tasks when no applicable method for the task is available. In this work, we extend ChatHTN. Namely, when ChatGPT generates a task decomposition, ChatHTN learns from it, akin to memoization. However, unlike memoization, it learns a generalized method that applies not only to the specific instance encountered, but to other instances of the same task. We conduct experiments on two domains and demonstrate that our online learning procedure reduces the number of calls to ChatGPT while solving at least as many problems, and in some cases, even more.
Ensuring worker safety remains a critical challenge in modern manufacturing environments. Industry 5.0 reorients the prevailing manufacturing paradigm toward more human-centric operations. Using a design science research methodology, we identify three essential requirements for next-generation safety training systems: high accuracy, low latency, and low cost. We introduce a multimodal chatbot powered by large language models that meets these design requirements. The chatbot uses retrieval-augmented generation to ground its responses in curated regulatory and technical documentation. To evaluate our solution, we developed a domain-specific benchmark of expert-validated question and answer pairs for three representative machines: a Bridgeport manual mill, a Haas TL-1 CNC lathe, and a Universal Robots UR5e collaborative robot. We tested 24 RAG configurations using a full-factorial design and assessed them with automated evaluations of correctness, latency, and cost. Our top 2 configurations were then evaluated by ten industry experts and academic researchers. Our results show that retrieval strategy and model configuration have a significant impact on performance. The top configuration (selected for chatbot deployment) achieved an accuracy of 86.66%, an average latency of 10.04 seconds, and an average cost of $0.005 per query. Overall, our work provides three contributions: an open-source, domain-grounded safety training chatbot; a validated benchmark for evaluating AI-assisted safety instruction; and a systematic methodology for designing and assessing AI-enabled instructional and immersive safety training systems for Industry 5.0 environments.