We propose EmoLat, a novel emotion latent space that enables fine-grained, text-driven image sentiment transfer by modeling cross-modal correlations between textual semantics and visual emotion features. Within EmoLat, an emotion semantic graph is constructed to capture the relational structure among emotions, objects, and visual attributes. To enhance the discriminability and transferability of emotion representations, we employ adversarial regularization, aligning the latent emotion distributions across modalities. Building upon EmoLat, a cross-modal sentiment transfer framework is proposed to manipulate image sentiment via joint embedding of text and EmoLat features. The network is optimized using a multi-objective loss incorporating semantic consistency, emotion alignment, and adversarial regularization. To support effective modeling, we construct EmoSpace Set, a large-scale benchmark dataset comprising images with dense annotations on emotions, object semantics, and visual attributes. Extensive experiments on EmoSpace Set demonstrate that our approach significantly outperforms existing state-of-the-art methods in both quantitative metrics and qualitative transfer fidelity, establishing a new paradigm for controllable image sentiment editing guided by textual input. The EmoSpace Set and all the code are available at http://github.com/JingVIPLab/EmoLat.
Anxiety affects hundreds of millions of individuals globally, yet large-scale screening remains limited. Social media language provides an opportunity for scalable detection, but current models often lack interpretability, keyword-robustness validation, and rigorous user-level data integrity. This work presents a transparent approach to social media-based anxiety detection through linguistically interpretable feature-grounded modeling and cross-domain validation. Using a substantial dataset of Reddit posts, we trained a logistic regression classifier on carefully curated subreddits for training, validation, and test splits. Comprehensive evaluation included feature ablation, keyword masking experiments, and varying-density difference analyses comparing anxious and control groups, along with external validation using clinically interviewed participants with diagnosed anxiety disorders. The model achieved strong performance while maintaining high accuracy even after sentiment removal or keyword masking. Early detection using minimal post history significantly outperformed random classification, and cross-domain analysis demonstrated strong consistency with clinical interview data. Results indicate that transparent linguistic features can support reliable, generalizable, and keyword-robust anxiety detection. The proposed framework provides a reproducible baseline for interpretable mental health screening across diverse online contexts.
We present a hybrid transformer architecture that replaces discrete middle layers with a continuous-depth Neural Ordinary Differential Equation (ODE) block, enabling inference-time control over generation attributes via a learned steering signal. Unlike standard transformers that process representations through fixed discrete layers, our approach treats depth as a continuous variable governed by a learned vector field $F_θ(H, τ, u)$, where $u$ is a low-dimensional control signal injected via explicit concatenation. We validate the architecture through four experiments: (1) gradient flow stability with zero exploding/vanishing gradient events, (2) semantic steering achieving 98\%/88\% accuracy for positive/negative sentiment control, (3) continuous interpolation validated by a negligible 0.068\% trajectory divergence between fixed and adaptive solvers, and (4) efficiency benchmarking demonstrating latency parity with standard discrete baselines. Additionally, we show that adaptive ODE solvers reveal geometric structure in the learned dynamics: the control signal partitions the vector field into distinct dynamical regimes with different curvature characteristics. The adjoint method enables $O(1)$ memory training regardless of integration depth. Our results demonstrate that continuous-depth dynamics with learned control signals provide a viable, efficient mechanism for steerable language generation.
Debt collection is a critical function within the banking, financial services, and insurance (BFSI) sector, relying heavily on large-scale human-to-human conversational interactions conducted primarily in Vietnamese contact centers. These conversations involve informal spoken language, emotional variability, and complex domain-specific reasoning, which pose significant challenges for traditional natural language processing systems. This paper introduces Credit C-GPT, a domain-specialized large language model with seven billion parameters, fine-tuned for conversational understanding in Vietnamese debt collection scenarios. The proposed model integrates multiple conversational intelligence tasks, including dialogue understanding, sentiment recognition, intent detection, call stage classification, and structured slot-value extraction, within a single reasoning-based framework. We describe the data construction process, annotation strategy, and training methodology, and evaluate the model on proprietary human-annotated datasets. Experimental results show consistent improvements over traditional pipeline-based approaches, indicating that domain-specialized conversational language models provide a scalable and privacy-aware solution for real-time assistance and post-call analytics in enterprise contact centers.
Most Multimodal Sentiment Analysis research has focused on point-wise regression. While straightforward, this approach is sensitive to label noise and neglects whether one sample is more positive than another, resulting in unstable predictions and poor correlation alignment. Pairwise ordinal learning frameworks emerged to address this gap, capturing relative order by learning from comparisons. Yet, they introduce two new trade-offs: First, they assign uniform importance to all comparisons, failing to adaptively focus on hard-to-rank samples. Second, they employ static ranking margins, which fail to reflect the varying semantic distances between sentiment groups. To address this, we propose a Two-Stage Group-wise Ranking and Calibration Framework (GRCF) that adapts the philosophy of Group Relative Policy Optimization (GRPO). Our framework resolves these trade-offs by simultaneously preserving relative ordinal structure, ensuring absolute score calibration, and adaptively focusing on difficult samples. Specifically, Stage 1 introduces a GRPO-inspired Advantage-Weighted Dynamic Margin Ranking Loss to build a fine-grained ordinal structure. Stage 2 then employs an MAE-driven objective to align prediction magnitudes. To validate its generalizability, we extend GRCF to classification tasks, including multimodal humor detection and sarcasm detection. GRCF achieves state-of-the-art performance on core regression benchmarks, while also showing strong generalizability in classification tasks.
This paper introduces PRA, an AI-agent design for simulating how individual users form privacy concerns in response to real-world news. Moving beyond population-level sentiment analysis, PRA integrates privacy and cognitive theories to simulate user-specific privacy reasoning grounded in personal comment histories and contextual cues. The agent reconstructs each user's "privacy mind", dynamically activates relevant privacy memory through a contextual filter that emulates bounded rationality, and generates synthetic comments reflecting how that user would likely respond to new privacy scenarios. A complementary LLM-as-a-Judge evaluator, calibrated against an established privacy concern taxonomy, quantifies the faithfulness of generated reasoning. Experiments on real-world Hacker News discussions show that \PRA outperforms baseline agents in privacy concern prediction and captures transferable reasoning patterns across domains including AI, e-commerce, and healthcare.
Standardized Student Evaluation of Teaching often suffer from low reliability, restricted response options, and response distortion. Existing machine learning methods that mine open-ended comments usually reduce feedback to binary sentiment, which overlooks concrete concerns such as content clarity, feedback timeliness, and instructor demeanor, and provides limited guidance for instructional improvement.We propose TeachPro, a multi-label learning framework that systematically assesses five key teaching dimensions: professional expertise, instructional behavior, pedagogical efficacy, classroom experience, and other performance metrics. We first propose a Dimension-Anchored Evidence Encoder, which integrates three core components: (i) a pre-trained text encoder that transforms qualitative feedback annotations into contextualized embeddings; (ii) a prompt module that represents five teaching dimensions as learnable semantic anchors; and (iii) a cross-attention mechanism that aligns evidence with pedagogical dimensions within a structured semantic space. We then propose a Cross-View Graph Synergy Network to represent student comments. This network comprises two components: (i) a Syntactic Branch that extracts explicit grammatical dependencies from parse trees, and (ii) a Semantic Branch that models latent conceptual relations derived from BERT-based similarity graphs. BiAffine fusion module aligns syntactic and semantic units, while a differential regularizer disentangles embeddings to encourage complementary representations. Finally, a cross-attention mechanism bridges the dimension-anchored evidence with the multi-view comment representations. We also contribute a novel benchmark dataset featuring expert qualitative annotations and multi-label scores. Extensive experiments demonstrate that TeachPro offers superior diagnostic granularity and robustness across diverse evaluation settings.
Despite remarkable progress in large language models, Urdu-a language spoken by over 230 million people-remains critically underrepresented in modern NLP systems. Existing multilingual models demonstrate poor performance on Urdu-specific tasks, struggling with the language's complex morphology, right-to-left Nastaliq script, and rich literary traditions. Even the base LLaMA-3.1 8B-Instruct model shows limited capability in generating fluent, contextually appropriate Urdu text. We introduce Qalb, an Urdu language model developed through a two-stage approach: continued pre-training followed by supervised fine-tuning. Starting from LLaMA 3.1 8B, we perform continued pre-training on a dataset of 1.97 billion tokens. This corpus comprises 1.84 billion tokens of diverse Urdu text-spanning news archives, classical and contemporary literature, government documents, and social media-combined with 140 million tokens of English Wikipedia data to prevent catastrophic forgetting. We then fine-tune the resulting model on the Alif Urdu-instruct dataset. Through extensive evaluation on Urdu-specific benchmarks, Qalb demonstrates substantial improvements, achieving a weighted average score of 90.34 and outperforming the previous state-of-the-art Alif-1.0-Instruct model (87.1) by 3.24 points, while also surpassing the base LLaMA-3.1 8B-Instruct model by 44.64 points. Qalb achieves state-of-the-art performance with comprehensive evaluation across seven diverse tasks including Classification, Sentiment Analysis, and Reasoning. Our results demonstrate that continued pre-training on diverse, high-quality language data, combined with targeted instruction fine-tuning, effectively adapts foundation models to low-resource languages.
This study investigates the use of prompt engineering to enhance large language models (LLMs), specifically GPT-4o-mini and gemini-1.5-flash, in sentiment analysis tasks. It evaluates advanced prompting techniques like few-shot learning, chain-of-thought prompting, and self-consistency against a baseline. Key tasks include sentiment classification, aspect-based sentiment analysis, and detecting subtle nuances such as irony. The research details the theoretical background, datasets, and methods used, assessing performance of LLMs as measured by accuracy, recall, precision, and F1 score. Findings reveal that advanced prompting significantly improves sentiment analysis, with the few-shot approach excelling in GPT-4o-mini and chain-of-thought prompting boosting irony detection in gemini-1.5-flash by up to 46%. Thus, while advanced prompting techniques overall improve performance, the fact that few-shot prompting works best for GPT-4o-mini and chain-of-thought excels in gemini-1.5-flash for irony detection suggests that prompting strategies must be tailored to both the model and the task. This highlights the importance of aligning prompt design with both the LLM's architecture and the semantic complexity of the task.
Identifying the strengths and limitations of a research paper is a core component of any literature review. However, traditional summaries reflect only the authors' self-presented perspective. Analyzing how other researchers discuss and cite the paper can offer a deeper, more practical understanding of its contributions and shortcomings. In this research, we introduce SECite, a novel approach for evaluating scholarly impact through sentiment analysis of citation contexts. We develop a semi-automated pipeline to extract citations referencing nine research papers and apply advanced natural language processing (NLP) techniques with unsupervised machine learning to classify these citation statements as positive or negative. Beyond sentiment classification, we use generative AI to produce sentiment-specific summaries that capture the strengths and limitations of each target paper, derived both from clustered citation groups and from the full text. Our findings reveal meaningful patterns in how the academic community perceives these works, highlighting areas of alignment and divergence between external citation feedback and the authors' own presentation. By integrating citation sentiment analysis with LLM-based summarization, this study provides a comprehensive framework for assessing scholarly contributions.