The financial market is known to be highly sensitive to news. Therefore, effectively incorporating news data into quantitative trading remains an important challenge. Existing approaches typically rely on manually designed rules and/or handcrafted features. In this work, we directly use the news sentiment scores derived from large language models, together with raw price and volume data, as observable inputs for reinforcement learning. These inputs are processed by sequence models such as recurrent neural networks or Transformers to make end-to-end trading decisions. We conduct experiments using the cryptocurrency market as an example and evaluate two representative reinforcement learning algorithms, namely Double Deep Q-Network (DDQN) and Group Relative Policy Optimization (GRPO). The results demonstrate that our news-aware approach, which does not depend on handcrafted features or manually designed rules, can achieve performance superior to market benchmarks. We further highlight the critical role of time-series information in this process.
Simulations constitute a fundamental component of medical and nursing education and traditionally employ standardized patients (SP) and high-fidelity manikins to develop clinical reasoning and communication skills. However, these methods require substantial resources, limiting accessibility and scalability. In this study, we introduce CLiVR, a Conversational Learning system in Virtual Reality that integrates large language models (LLMs), speech processing, and 3D avatars to simulate realistic doctor-patient interactions. Developed in Unity and deployed on the Meta Quest 3 platform, CLiVR enables trainees to engage in natural dialogue with virtual patients. Each simulation is dynamically generated from a syndrome-symptom database and enhanced with sentiment analysis to provide feedback on communication tone. Through an expert user study involving medical school faculty (n=13), we assessed usability, realism, and perceived educational impact. Results demonstrated strong user acceptance, high confidence in educational potential, and valuable feedback for improvement. CLiVR offers a scalable, immersive supplement to SP-based training.
We introduce a novel high-frequency daily panel dataset of both markets and news-based indicators -- including Geopolitical Risk, Economic Policy Uncertainty, Trade Policy Uncertainty, and Political Sentiment -- for 42 countries across both emerging and developed markets. Using this dataset, we study how sentiment dynamics shape sovereign risk, measured by Credit Default Swap (CDS) spreads, and evaluate their forecasting value relative to traditional drivers such as global monetary policy and market volatility. Our horse-race analysis of forecasting models demonstrates that incorporating news-based indicators significantly enhances predictive accuracy and enriches the analysis, with non-linear machine learning methods -- particularly Random Forests -- delivering the largest gains. Our analysis reveals that while global financial variables remain the dominant drivers of sovereign risk, geopolitical risk and economic policy uncertainty also play a meaningful role. Crucially, their effects are amplified through non-linear interactions with global financial conditions. Finally, we document pronounced regional heterogeneity, as certain asset classes and emerging markets exhibit heightened sensitivity to shocks in policy rates, global financial volatility, and geopolitical risk.




This paper presents a Multi Agent Bitcoin Trading system that utilizes Large Lan- guage Models (LLMs) for alpha generation and portfolio management in the cryptocur- rencies market. Unlike equities, cryptocurrencies exhibit extreme volatility and are heavily influenced by rapidly shifting market sentiments and regulatory announcements, making them difficult to model using static regression models or neural networks trained solely on historical data [53]. The proposed framework overcomes this by structuring LLMs into specialised agents for technical analysis, sentiment evaluation, decision-making, and performance reflection. The system improves over time through a novel verbal feedback mechanism where a Reflect agent provides daily and weekly natural-language critiques of trading decisions. These textual evaluations are then injected into future prompts, al- lowing the system to adjust indicator priorities, sentiment weights, and allocation logic without parameter updates or finetuning. Back-testing on Bitcoin price data from July 2024 to April 2025 shows consistent outperformance across market regimes: the Quantita- tive agent delivered over 30% higher returns in bullish phases and 15% overall gains versus buy-and-hold, while the sentiment-driven agent turned sideways markets from a small loss into a gain of over 100%. Adding weekly feedback further improved total performance by 31% and reduced bearish losses by 10%. The results demonstrate that verbal feedback represents a new, scalable, and low-cost method of tuning LLMs for financial goals.




To address the need for a more comprehensive evaluation of French Natural Language Understanding (NLU), we introduce COLE, a new benchmark composed of 23 diverse task covering a broad range of NLU capabilities, including sentiment analysis, paraphrase detection, grammatical judgment, and reasoning, with a particular focus on linguistic phenomena relevant to the French language. We benchmark 94 large language models (LLM), providing an extensive analysis of the current state of French NLU. Our results highlight a significant performance gap between closed- and open-weights models and identify key challenging frontiers for current LLMs, such as zero-shot extractive question-answering (QA), fine-grained word sense disambiguation, and understanding of regional language variations. We release COLE as a public resource to foster further progress in French language modelling.
Sentiment analysis is a key task in Natural Language Processing (NLP), enabling the extraction of meaningful insights from user opinions across various domains. However, performing sentiment analysis in Persian remains challenging due to the scarcity of labeled datasets, limited preprocessing tools, and the lack of high-quality embeddings and feature extraction methods. To address these limitations, we propose a hybrid approach that integrates machine learning (ML) and deep learning (DL) techniques for Persian aspect-based sentiment analysis (ABSA). In particular, we utilize polarity scores from multilingual BERT as additional features and incorporate them into a decision tree classifier, achieving an accuracy of 93.34%-surpassing existing benchmarks on the Pars-ABSA dataset. Additionally, we introduce a Persian synonym and entity dictionary, a novel linguistic resource that supports text augmentation through synonym and named entity replacement. Our results demonstrate the effectiveness of hybrid modeling and feature augmentation in advancing sentiment analysis for low-resource languages such as Persian.
We propose the Causal Sphere Hypergraph Transformer (CSHT), a novel architecture for interpretable financial time-series forecasting that unifies \emph{Granger-causal hypergraph structure}, \emph{Riemannian geometry}, and \emph{causally masked Transformer attention}. CSHT models the directional influence of financial news and sentiment on asset returns by extracting multivariate Granger-causal dependencies, which are encoded as directional hyperedges on the surface of a hypersphere. Attention is constrained via angular masks that preserve both temporal directionality and geometric consistency. Evaluated on S\&P 500 data from 2018 to 2023, including the 2020 COVID-19 shock, CSHT consistently outperforms baselines across return prediction, regime classification, and top-asset ranking tasks. By enforcing predictive causal structure and embedding variables in a Riemannian manifold, CSHT delivers both \emph{robust generalisation across market regimes} and \emph{transparent attribution pathways} from macroeconomic events to stock-level responses. These results suggest that CSHT is a principled and practical solution for trustworthy financial forecasting under uncertainty.
Our interpretation of value concepts is shaped by our sociocultural background and lived experiences, and is thus subjective. Recognizing individual value interpretations is important for developing AI systems that can align with diverse human perspectives and avoid bias toward majority viewpoints. To this end, we investigate whether a language model can predict individual value interpretations by leveraging multi-dimensional subjective annotations as a proxy for their interpretive lens. That is, we evaluate whether providing examples of how an individual annotates Sentiment, Emotion, Argument, and Topics (SEAT dimensions) helps a language model in predicting their value interpretations. Our experiment across different zero- and few-shot settings demonstrates that providing all SEAT dimensions simultaneously yields superior performance compared to individual dimensions and a baseline where no information about the individual is provided. Furthermore, individual variations across annotators highlight the importance of accounting for the incorporation of individual subjective annotators. To the best of our knowledge, this controlled setting, although small in size, is the first attempt to go beyond demographics and investigate the impact of annotation behavior on value prediction, providing a solid foundation for future large-scale validation.




Multimodal sentiment analysis (MSA) leverages information fusion from diverse modalities (e.g., text, audio, visual) to enhance sentiment prediction. However, simple fusion techniques often fail to account for variations in modality quality, such as those that are noisy, missing, or semantically conflicting. This oversight leads to suboptimal performance, especially in discerning subtle emotional nuances. To mitigate this limitation, we introduce a simple yet efficient \textbf{A}daptive \textbf{G}ated \textbf{F}usion \textbf{N}etwork that adaptively adjusts feature weights via a dual gate fusion mechanism based on information entropy and modality importance. This mechanism mitigates the influence of noisy modalities and prioritizes informative cues following unimodal encoding and cross-modal interaction. Experiments on CMU-MOSI and CMU-MOSEI show that AGFN significantly outperforms strong baselines in accuracy, effectively discerning subtle emotions with robust performance. Visualization analysis of feature representations demonstrates that AGFN enhances generalization by learning from a broader feature distribution, achieved by reducing the correlation between feature location and prediction error, thereby decreasing reliance on specific locations and creating more robust multimodal feature representations.
Large Language Models (LLMs) are widely used across multiple domains but continue to raise concerns regarding security and fairness. Beyond known attack vectors such as data poisoning and prompt injection, LLMs are also vulnerable to fairness bugs. These refer to unintended behaviors influenced by sensitive demographic cues (e.g., race or sexual orientation) that should not affect outcomes. Another key issue is hallucination, where models generate plausible yet false information. Retrieval-Augmented Generation (RAG) has emerged as a strategy to mitigate hallucinations by combining external retrieval with text generation. However, its adoption raises new fairness concerns, as the retrieved content itself may surface or amplify bias. This study conducts fairness testing through metamorphic testing (MT), introducing controlled demographic perturbations in prompts to assess fairness in sentiment analysis performed by three Small Language Models (SLMs) hosted on HuggingFace (Llama-3.2-3B-Instruct, Mistral-7B-Instruct-v0.3, and Llama-3.1-Nemotron-8B), each integrated into a RAG pipeline. Results show that minor demographic variations can break up to one third of metamorphic relations (MRs). A detailed analysis of these failures reveals a consistent bias hierarchy, with perturbations involving racial cues being the predominant cause of the violations. In addition to offering a comparative evaluation, this work reinforces that the retrieval component in RAG must be carefully curated to prevent bias amplification. The findings serve as a practical alert for developers, testers and small organizations aiming to adopt accessible SLMs without compromising fairness or reliability.