What is Iris Segmentation? Iris segmentation is the process of identifying and extracting the iris region from an eye image for biometric identification.
Papers and Code
Sep 30, 2024
Abstract:Periorbital segmentation and distance prediction using deep learning allows for the objective quantification of disease state, treatment monitoring, and remote medicine. However, there are currently no reports of segmentation datasets for the purposes of training deep learning models with sub mm accuracy on the regions around the eyes. All images (n=2842) had the iris, sclera, lid, caruncle, and brow segmented by five trained annotators. Here, we validate this dataset through intra and intergrader reliability tests and show the utility of the data in training periorbital segmentation networks. All the annotations are publicly available for free download. Having access to segmentation datasets designed specifically for oculoplastic surgery will permit more rapid development of clinically useful segmentation networks which can be leveraged for periorbital distance prediction and disease classification. In addition to the annotations, we also provide an open-source toolkit for periorbital distance prediction from segmentation masks. The weights of all models have also been open-sourced and are publicly available for use by the community.
* 12 pages, 4 figures
Via

Aug 06, 2024
Abstract:Iris recognition is widely used in several fields such as mobile phones, financial transactions, identification cards, airport security, international border control, voter registration for living persons. However, the possibility of identifying deceased individuals based on their iris patterns has emerged recently as a supplementary or alternative method valuable in forensic analysis. Simultaneously, it poses numerous new technological challenges and one of the most challenging among them is the image segmentation stage as conventional iris recognition approaches have struggled to reliably execute it. This paper presents and compares Deep Learning (DL) models designed for segmenting iris images collected from the deceased subjects, by training SegNet and DeepLabV3+ semantic segmentation methods where using VGG19, ResNet18, ResNet50, MobileNetv2, Xception, or InceptionResNetv2 as backbones. In this study, our experiments demonstrate that our proposed method effectively learns and identifies specific deformations inherent in post-mortem samples and providing a significant improvement in accuracy. By employing our novel method MobileNetv2 as the backbone of DeepLabV3+ and replacing the final layer with a hybrid loss function combining Boundary and Dice loss, we achieve Mean Intersection over Union of 95.54% on the Warsaw-BioBase-PostMortem-Iris-v1 dataset. To the best of our knowledge, this study provides the most extensive evaluation of DL models for post-mortem iris segmentation.
* submitted to ijcb 2024 special session
Via

Aug 30, 2024
Abstract:Parsing of eye components (i.e. pupil, iris and sclera) is fundamental for eye tracking and gaze estimation for AR/VR products. Mainstream approaches tackle this problem as a multi-class segmentation task, providing only visible part of pupil/iris, other methods regress elliptical parameters using human-annotated full pupil/iris parameters. In this paper, we consider two priors: projected full pupil/iris circle can be modelled with ellipses (ellipse prior), and the visibility of pupil/iris is controlled by openness of eye-region (condition prior), and design a novel method CondSeg to estimate elliptical parameters of pupil/iris directly from segmentation labels, without explicitly annotating full ellipses, and use eye-region mask to control the visibility of estimated pupil/iris ellipses. Conditioned segmentation loss is used to optimize the parameters by transforming parameterized ellipses into pixel-wise soft masks in a differentiable way. Our method is tested on public datasets (OpenEDS-2019/-2020) and shows competitive results on segmentation metrics, and provides accurate elliptical parameters for further applications of eye tracking simultaneously.
Via

Aug 24, 2024
Abstract:In the last few years, face morphing has been shown to be a complex challenge for Face Recognition Systems (FRS). Thus, the evaluation of other biometric modalities such as fingerprint, iris, and others must be explored and evaluated to enhance biometric systems. This work proposes an end-to-end framework to produce iris morphs at the image level, creating morphs from Periocular iris images. This framework considers different stages such as pair subject selection, segmentation, morph creation, and a new iris recognition system. In order to create realistic morphed images, two approaches for subject selection are explored: random selection and similar radius size selection. A vulnerability analysis and a Single Morphing Attack Detection algorithm were also explored. The results show that this approach obtained very realistic images that can confuse conventional iris recognition systems.
* in revision process
Via

Jul 30, 2024
Abstract:Semantic segmentation consists of predicting a semantic label for each image pixel. Conventional deep learning models do not take advantage of ordinal relations that might exist in the domain at hand. For example, it is known that the pupil is inside the iris, and the lane markings are inside the road. Such domain knowledge can be employed as constraints to make the model more robust. The current literature on this topic has explored pixel-wise ordinal segmentation methods, which treat each pixel as an independent observation and promote ordinality in its representation. This paper proposes novel spatial ordinal segmentation methods, which take advantage of the structured image space by considering each pixel as an observation dependent on its neighborhood context to also promote ordinal spatial consistency. When evaluated with five biomedical datasets and multiple configurations of autonomous driving datasets, ordinal methods resulted in more ordinally-consistent models, with substantial improvements in ordinal metrics and some increase in the Dice coefficient. It was also shown that the incorporation of ordinal consistency results in models with better generalization abilities.
* 12 pages
Via

Jul 02, 2024
Abstract:With advancements in hardware, high-quality HMD devices are being developed by numerous companies, driving increased consumer interest in AR, VR, and MR applications. In this work, we present a new dataset, called VRBiom, of periocular videos acquired using a Virtual Reality headset. The VRBiom, targeted at biometric applications, consists of 900 short videos acquired from 25 individuals recorded in the NIR spectrum. These 10s long videos have been captured using the internal tracking cameras of Meta Quest Pro at 72 FPS. To encompass real-world variations, the dataset includes recordings under three gaze conditions: steady, moving, and partially closed eyes. We have also ensured an equal split of recordings without and with glasses to facilitate the analysis of eye-wear. These videos, characterized by non-frontal views of the eye and relatively low spatial resolutions (400 x 400), can be instrumental in advancing state-of-the-art research across various biometric applications. The VRBiom dataset can be utilized to evaluate, train, or adapt models for biometric use-cases such as iris and/or periocular recognition and associated sub-tasks such as detection and semantic segmentation. In addition to data from real individuals, we have included around 1100 PA constructed from 92 PA instruments. These PAIs fall into six categories constructed through combinations of print attacks (real and synthetic identities), fake 3D eyeballs, plastic eyes, and various types of masks and mannequins. These PA videos, combined with genuine (bona-fide) data, can be utilized to address concerns related to spoofing, which is a significant threat if these devices are to be used for authentication. The VRBiom dataset is publicly available for research purposes related to biometric applications only.
Via

Feb 09, 2024
Abstract:Iris segmentation is a critical component of an iris biometric system and it involves extracting the annular iris region from an ocular image. In this work, we develop a pixel-level iris segmentation model from a foundational model, viz., Segment Anything Model (SAM), that has been successfully used for segmenting arbitrary objects. The primary contribution of this work lies in the integration of different loss functions during the fine-tuning of SAM on ocular images. In particular, the importance of Focal Loss is borne out in the fine-tuning process since it strategically addresses the class imbalance problem (i.e., iris versus non-iris pixels). Experiments on ND-IRIS-0405, CASIA-Iris-Interval-v3, and IIT-Delhi-Iris datasets convey the efficacy of the trained model for the task of iris segmentation. For instance, on the ND-IRIS-0405 dataset, an average segmentation accuracy of 99.58% was achieved, compared to the best baseline performance of 89.75%.
* 15 pages, 12 figures (some of them have two figures together),
Submitted to ICPRAI2024
Via

Mar 18, 2024
Abstract:We propose an improvement to the landmark validity loss. Landmark detection is widely used in head pose estimation, eyelid shape extraction, as well as pupil and iris segmentation. There are numerous additional applications where landmark detection is used to estimate the shape of complex objects. One part of this process is the accurate and fine-grained detection of the shape. The other part is the validity or inaccuracy per landmark, which can be used to detect unreliable areas, where the shape possibly does not fit, and to improve the accuracy of the entire shape extraction by excluding inaccurate landmarks. We propose a normalization in the loss formulation, which improves the accuracy of the entire approach due to the numerical balance of the normalized inaccuracy. In addition, we propose a margin for the inaccuracy to reduce the impact of gradients, which are produced by negligible errors close to the ground truth.
Via

Apr 22, 2024
Abstract:Video-based eye trackers capture the iris biometric and enable authentication to secure user identity. However, biometric authentication is susceptible to spoofing another user's identity through physical or digital manipulation. The current standard to identify physical spoofing attacks on eye-tracking sensors uses liveness detection. Liveness detection classifies gaze data as real or fake, which is sufficient to detect physical presentation attacks. However, such defenses cannot detect a spoofing attack when real eye image inputs are digitally manipulated to swap the iris pattern of another person. We propose IrisSwap as a novel attack on gaze-based liveness detection. IrisSwap allows attackers to segment and digitally swap in a victim's iris pattern to fool iris authentication. Both offline and online attacks produce gaze data that deceives the current state-of-the-art defense models at rates up to 58% and motivates the need to develop more advanced authentication methods for eye trackers.
Via

Dec 30, 2023
Abstract:Synthesis of same-identity biometric iris images, both for existing and non-existing identities while preserving the identity across a wide range of pupil sizes, is complex due to intricate iris muscle constriction mechanism, requiring a precise model of iris non-linear texture deformations to be embedded into the synthesis pipeline. This paper presents the first method of fully data-driven, identity-preserving, pupil size-varying s ynthesis of iris images. This approach is capable of synthesizing images of irises with different pupil sizes representing non-existing identities as well as non-linearly deforming the texture of iris images of existing subjects given the segmentation mask of the target iris image. Iris recognition experiments suggest that the proposed deformation model not only preserves the identity when changing the pupil size but offers better similarity between same-identity iris samples with significant differences in pupil size, compared to state-of-the-art linear and non-linear (bio-mechanical-based) iris deformation models. Two immediate applications of the proposed approach are: (a) synthesis of, or enhancement of the existing biometric datasets for iris recognition, mimicking those acquired with iris sensors, and (b) helping forensic human experts in examining iris image pairs with significant differences in pupil dilation. Source codes and weights of the models are made available with the paper.
Via
