Abstract:In this paper, we propose ScoreMix, a novel yet simple data augmentation strategy leveraging the score compositional properties of diffusion models to enhance discriminator performance, particularly under scenarios with limited labeled data. By convexly mixing the scores from different class-conditioned trajectories during diffusion sampling, we generate challenging synthetic samples that significantly improve discriminative capabilities in all studied benchmarks. We systematically investigate class-selection strategies for mixing and discover that greater performance gains arise when combining classes distant in the discriminator's embedding space, rather than close in the generator's condition space. Moreover, we empirically show that, under standard metrics, the correlation between the generator's learned condition space and the discriminator's embedding space is minimal. Our approach achieves notable performance improvements without extensive parameter searches, demonstrating practical advantages for training discriminative models while effectively mitigating problems regarding collections of large datasets. Paper website: https://parsa-ra.github.io/scoremix
Abstract:Cross-spectral face recognition systems are designed to enhance the performance of facial recognition systems by enabling cross-modal matching under challenging operational conditions. A particularly relevant application is the matching of near-infrared (NIR) images to visible-spectrum (VIS) images, enabling the verification of individuals by comparing NIR facial captures acquired with VIS reference images. The use of NIR imaging offers several advantages, including greater robustness to illumination variations, better visibility through glasses and glare, and greater resistance to presentation attacks. Despite these claimed benefits, the robustness of NIR-based systems against presentation attacks has not been systematically studied in the literature. In this work, we conduct a comprehensive evaluation into the vulnerability of NIR-VIS cross-spectral face recognition systems to presentation attacks. Our empirical findings indicate that, although these systems exhibit a certain degree of reliability, they remain vulnerable to specific attacks, emphasizing the need for further research in this area.
Abstract:Heterogeneous Face Recognition (HFR) addresses the challenge of matching face images across different sensing modalities, such as thermal to visible or near-infrared to visible, expanding the applicability of face recognition systems in real-world, unconstrained environments. While recent HFR methods have shown promising results, many rely on computation-intensive architectures, limiting their practicality for deployment on resource-constrained edge devices. In this work, we present a lightweight yet effective HFR framework by adapting a hybrid CNN-Transformer architecture originally designed for face recognition. Our approach enables efficient end-to-end training with minimal paired heterogeneous data while preserving strong performance on standard RGB face recognition tasks. This makes it a compelling solution for both homogeneous and heterogeneous scenarios. Extensive experiments across multiple challenging HFR and face recognition benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches while maintaining a low computational overhead.
Abstract:The increasing dependence on large-scale datasets in machine learning introduces significant privacy and ethical challenges. Synthetic data generation offers a promising solution; however, most current methods rely on external datasets or pre-trained models, which add complexity and escalate resource demands. In this work, we introduce a novel self-contained synthetic augmentation technique that strategically samples from a conditional generative model trained exclusively on the target dataset. This approach eliminates the need for auxiliary data sources. Applied to face recognition datasets, our method achieves 1--12\% performance improvements on the IJB-C and IJB-B benchmarks. It outperforms models trained solely on real data and exceeds the performance of state-of-the-art synthetic data generation baselines. Notably, these enhancements often surpass those achieved through architectural improvements, underscoring the significant impact of synthetic augmentation in data-scarce environments. These findings demonstrate that carefully integrated synthetic data not only addresses privacy and resource constraints but also substantially boosts model performance. Project page https://parsa-ra.github.io/auggen
Abstract:Demographic bias in face recognition (FR) has emerged as a critical area of research, given its impact on fairness, equity, and reliability across diverse applications. As FR technologies are increasingly deployed globally, disparities in performance across demographic groups -- such as race, ethnicity, and gender -- have garnered significant attention. These biases not only compromise the credibility of FR systems but also raise ethical concerns, especially when these technologies are employed in sensitive domains. This review consolidates extensive research efforts providing a comprehensive overview of the multifaceted aspects of demographic bias in FR. We systematically examine the primary causes, datasets, assessment metrics, and mitigation approaches associated with demographic disparities in FR. By categorizing key contributions in these areas, this work provides a structured approach to understanding and addressing the complexity of this issue. Finally, we highlight current advancements and identify emerging challenges that need further investigation. This article aims to provide researchers with a unified perspective on the state-of-the-art while emphasizing the critical need for equitable and trustworthy FR systems.
Abstract:This study highlights the potential of ChatGPT (specifically GPT-4o) as a competitive alternative for Face Presentation Attack Detection (PAD), outperforming several PAD models, including commercial solutions, in specific scenarios. Our results show that GPT-4o demonstrates high consistency, particularly in few-shot in-context learning, where its performance improves as more examples are provided (reference data). We also observe that detailed prompts enable the model to provide scores reliably, a behavior not observed with concise prompts. Additionally, explanation-seeking prompts slightly enhance the model's performance by improving its interpretability. Remarkably, the model exhibits emergent reasoning capabilities, correctly predicting the attack type (print or replay) with high accuracy in few-shot scenarios, despite not being explicitly instructed to classify attack types. Despite these strengths, GPT-4o faces challenges in zero-shot tasks, where its performance is limited compared to specialized PAD systems. Experiments were conducted on a subset of the SOTERIA dataset, ensuring compliance with data privacy regulations by using only data from consenting individuals. These findings underscore GPT-4o's promise in PAD applications, laying the groundwork for future research to address broader data privacy concerns and improve cross-dataset generalization. Code available here: https://gitlab.idiap.ch/bob/bob.paper.wacv2025_chatgpt_face_pad
Abstract:We present three biometric datasets (iCarB-Face, iCarB-Fingerprint, iCarB-Voice) containing face videos, fingerprint images, and voice samples, collected inside a car from 200 consenting volunteers. The data was acquired using a near-infrared camera, two fingerprint scanners, and two microphones, while the volunteers were seated in the driver's seat of the car. The data collection took place while the car was parked both indoors and outdoors, and different "noises" were added to simulate non-ideal biometric data capture that may be encountered in real-life driver recognition. Although the datasets are specifically tailored to in-vehicle biometric recognition, their utility is not limited to the automotive environment. The iCarB datasets, which are available to the research community, can be used to: (i) evaluate and benchmark face, fingerprint, and voice recognition systems (we provide several evaluation protocols); (ii) create multimodal pseudo-identities, to train/test multimodal fusion algorithms; (iii) create Presentation Attacks from the biometric data, to evaluate Presentation Attack Detection algorithms; (iv) investigate demographic and environmental biases in biometric systems, using the provided metadata. To the best of our knowledge, ours are the largest and most diverse publicly available in-vehicle biometric datasets. Most other datasets contain only one biometric modality (usually face), while our datasets consist of three modalities, all acquired in the same automotive environment. Moreover, iCarB-Fingerprint seems to be the first publicly available in-vehicle fingerprint dataset. Finally, the iCarB datasets boast a rare level of demographic diversity among the 200 data subjects, including a 50/50 gender split, skin colours across the whole Fitzpatrick-scale spectrum, and a wide age range (18-60+). So, these datasets will be valuable for advancing biometrics research.
Abstract:The accuracy of face recognition systems has improved significantly in the past few years, thanks to the large amount of data collected and the advancement in neural network architectures. However, these large-scale datasets are often collected without explicit consent, raising ethical and privacy concerns. To address this, there have been proposals to use synthetic datasets for training face recognition models. Yet, such models still rely on real data to train the generative models and generally exhibit inferior performance compared to those trained on real datasets. One of these datasets, DigiFace, uses a graphics pipeline to generate different identities and different intra-class variations without using real data in training the models. However, the performance of this approach is poor on face recognition benchmarks, possibly due to the lack of realism in the images generated from the graphics pipeline. In this work, we introduce a novel framework for realism transfer aimed at enhancing the realism of synthetically generated face images. Our method leverages the large-scale face foundation model, and we adapt the pipeline for realism enhancement. By integrating the controllable aspects of the graphics pipeline with our realism enhancement technique, we generate a large amount of realistic variations-combining the advantages of both approaches. Our empirical evaluations demonstrate that models trained using our enhanced dataset significantly improve the performance of face recognition systems over the baseline. The source code and datasets will be made available publicly.
Abstract:Heterogeneous Face Recognition (HFR) systems aim to enhance the capability of face recognition in challenging cross-modal authentication scenarios. However, the significant domain gap between the source and target modalities poses a considerable challenge for cross-domain matching. Existing literature primarily focuses on developing HFR approaches for specific pairs of face modalities, necessitating the explicit training of models for each source-target combination. In this work, we introduce a novel framework designed to train a modality-agnostic HFR method capable of handling multiple modalities during inference, all without explicit knowledge of the target modality labels. We achieve this by implementing a computationally efficient automatic routing mechanism called Switch Style Modulation Blocks (SSMB) that trains various domain expert modulators which transform the feature maps adaptively reducing the domain gap. Our proposed SSMB can be trained end-to-end and seamlessly integrated into pre-trained face recognition models, transforming them into modality-agnostic HFR models. We have performed extensive evaluations on HFR benchmark datasets to demonstrate its effectiveness. The source code and protocols will be made publicly available.
Abstract:In this paper, we investigate the potential of image-to-image translation (I2I) techniques for transferring realism to 3D-rendered facial images in the context of Face Recognition (FR) systems. The primary motivation for using 3D-rendered facial images lies in their ability to circumvent the challenges associated with collecting large real face datasets for training FR systems. These images are generated entirely by 3D rendering engines, facilitating the generation of synthetic identities. However, it has been observed that FR systems trained on such synthetic datasets underperform when compared to those trained on real datasets, on various FR benchmarks. In this work, we demonstrate that by transferring the realism to 3D-rendered images (i.e., making the 3D-rendered images look more real), we can boost the performance of FR systems trained on these more photorealistic images. This improvement is evident when these systems are evaluated against FR benchmarks utilizing real-world data, thereby paving new pathways for employing synthetic data in real-world applications.