Abstract:The advent of foundation models, particularly Vision-Language Models (VLMs) and Multi-modal Large Language Models (MLLMs), has redefined the frontiers of artificial intelligence, enabling remarkable generalization across diverse tasks with minimal or no supervision. Yet, their potential in biometric recognition and analysis remains relatively underexplored. In this work, we introduce a comprehensive benchmark that evaluates the zero-shot and few-shot performance of state-of-the-art publicly available VLMs and MLLMs across six biometric tasks spanning the face and iris modalities: face verification, soft biometric attribute prediction (gender and race), iris recognition, presentation attack detection (PAD), and face manipulation detection (morphs and deepfakes). A total of 41 VLMs were used in this evaluation. Experiments show that embeddings from these foundation models can be used for diverse biometric tasks with varying degrees of success. For example, in the case of face verification, a True Match Rate (TMR) of 96.77 percent was obtained at a False Match Rate (FMR) of 1 percent on the Labeled Face in the Wild (LFW) dataset, without any fine-tuning. In the case of iris recognition, the TMR at 1 percent FMR on the IITD-R-Full dataset was 97.55 percent without any fine-tuning. Further, we show that applying a simple classifier head to these embeddings can help perform DeepFake detection for faces, Presentation Attack Detection (PAD) for irides, and extract soft biometric attributes like gender and ethnicity from faces with reasonably high accuracy. This work reiterates the potential of pretrained models in achieving the long-term vision of Artificial General Intelligence.
Abstract:This study utilizes the advanced capabilities of the GPT-4 multimodal Large Language Model (LLM) to explore its potential in iris recognition - a field less common and more specialized than face recognition. By focusing on this niche yet crucial area, we investigate how well AI tools like ChatGPT can understand and analyze iris images. Through a series of meticulously designed experiments employing a zero-shot learning approach, the capabilities of ChatGPT-4 was assessed across various challenging conditions including diverse datasets, presentation attacks, occlusions such as glasses, and other real-world variations. The findings convey ChatGPT-4's remarkable adaptability and precision, revealing its proficiency in identifying distinctive iris features, while also detecting subtle effects like makeup on iris recognition. A comparative analysis with Gemini Advanced - Google's AI model - highlighted ChatGPT-4's better performance and user experience in complex iris analysis tasks. This research not only validates the use of LLMs for specialized biometric applications but also emphasizes the importance of nuanced query framing and interaction design in extracting significant insights from biometric data. Our findings suggest a promising path for future research and the development of more adaptable, efficient, robust and interactive biometric security solutions.
Abstract:Iris segmentation is a critical component of an iris biometric system and it involves extracting the annular iris region from an ocular image. In this work, we develop a pixel-level iris segmentation model from a foundational model, viz., Segment Anything Model (SAM), that has been successfully used for segmenting arbitrary objects. The primary contribution of this work lies in the integration of different loss functions during the fine-tuning of SAM on ocular images. In particular, the importance of Focal Loss is borne out in the fine-tuning process since it strategically addresses the class imbalance problem (i.e., iris versus non-iris pixels). Experiments on ND-IRIS-0405, CASIA-Iris-Interval-v3, and IIT-Delhi-Iris datasets convey the efficacy of the trained model for the task of iris segmentation. For instance, on the ND-IRIS-0405 dataset, an average segmentation accuracy of 99.58% was achieved, compared to the best baseline performance of 89.75%.