Abstract:The rapid advancement of deepfake and face swap technologies has raised significant concerns in digital security, particularly in identity verification and onboarding processes. Conventional detection methods often struggle to generalize against sophisticated facial manipulations. This study proposes an enhanced deep-learning detection framework that combines handcrafted frequency-domain features with conventional RGB inputs. This hybrid approach exploits frequency and spatial domain artifacts introduced during image manipulation, providing richer and more discriminative information to the classifier. Several frequency handcrafted features were evaluated, including the Steganalysis Rich Model, Discrete Cosine Transform, Error Level Analysis, Singular Value Decomposition, and Discrete Fourier Transform
Abstract:Biometric capture devices have been utilised to estimate a person's alertness through near-infrared iris images, expanding their use beyond just biometric recognition. However, capturing a substantial number of corresponding images related to alcohol consumption, drug use, and sleep deprivation to create a dataset for training an AI model presents a significant challenge. Typically, a large quantity of images is required to effectively implement a deep learning approach. Currently, training downstream models with a huge number of images based on foundational models provides a real opportunity to enhance this area, thanks to the generalisation capabilities of self-supervised models. This work examines the application of deep learning and foundational models in predicting fitness for duty, which is defined as the subject condition related to determining the alertness for work.
Abstract:This work summarises and reports the results of the second Presentation Attack Detection competition on ID cards. This new version includes new elements compared to the previous one. (1) An automatic evaluation platform was enabled for automatic benchmarking; (2) Two tracks were proposed in order to evaluate algorithms and datasets, respectively; and (3) A new ID card dataset was shared with Track 1 teams to serve as the baseline dataset for the training and optimisation. The Hochschule Darmstadt, Fraunhofer-IGD, and Facephi company jointly organised this challenge. 20 teams were registered, and 74 submitted models were evaluated. For Track 1, the "Dragons" team reached first place with an Average Ranking and Equal Error rate (EER) of AV-Rank of 40.48% and 11.44% EER, respectively. For the more challenging approach in Track 2, the "Incode" team reached the best results with an AV-Rank of 14.76% and 6.36% EER, improving on the results of the first edition of 74.30% and 21.87% EER, respectively. These results suggest that PAD on ID cards is improving, but it is still a challenging problem related to the number of images, especially of bona fide images.
Abstract:Nowadays, one of the main challenges in presentation attack detection (PAD) on ID cards is obtaining generalisation capabilities for a diversity of countries that are issuing ID cards. Most PAD systems are trained on one, two, or three ID documents because of privacy protection concerns. As a result, they do not obtain competitive results for commercial purposes when tested in an unknown new ID card country. In this scenario, Foundation Models (FM) trained on huge datasets can help to improve generalisation capabilities. This work intends to improve and benchmark the capabilities of FM and how to use them to adapt the generalisation on PAD of ID Documents. Different test protocols were used, considering zero-shot and fine-tuning and two different ID card datasets. One private dataset based on Chilean IDs and one open-set based on three ID countries: Finland, Spain, and Slovakia. Our findings indicate that bona fide images are the key to generalisation.
Abstract:The demand for Presentation Attack Detection (PAD) to identify fraudulent ID documents in remote verification systems has significantly risen in recent years. This increase is driven by several factors, including the rise of remote work, online purchasing, migration, and advancements in synthetic images. Additionally, we have noticed a surge in the number of attacks aimed at the enrolment process. Training a PAD to detect fake ID documents is very challenging because of the limited number of ID documents available due to privacy concerns. This work proposes a new passport dataset generated from a hybrid method that combines synthetic data and open-access information using the ICAO requirement to obtain realistic training and testing images.
Abstract:Foundation models are becoming increasingly popular due to their strong generalization capabilities resulting from being trained on huge datasets. These generalization capabilities are attractive in areas such as NIR Iris Presentation Attack Detection (PAD), in which databases are limited in the number of subjects and diversity of attack instruments, and there is no correspondence between the bona fide and attack images because, most of the time, they do not belong to the same subjects. This work explores an iris PAD approach based on two foundation models, DinoV2 and VisualOpenClip. The results show that fine-tuning prediction with a small neural network as head overpasses the state-of-the-art performance based on deep learning approaches. However, systems trained from scratch have still reached better results if bona fide and attack images are available.
Abstract:This paper proposes a Few-shot Learning (FSL) approach for detecting Presentation Attacks on ID Cards deployed in a remote verification system and its extension to new countries. Our research analyses the performance of Prototypical Networks across documents from Spain and Chile as a baseline and measures the extension of generalisation capabilities of new ID Card countries such as Argentina and Costa Rica. Specifically targeting the challenge of screen display presentation attacks. By leveraging convolutional architectures and meta-learning principles embodied in Prototypical Networks, we have crafted a model that demonstrates high efficacy with Few-shot examples. This research reveals that competitive performance can be achieved with as Few-shots as five unique identities and with under 100 images per new country added. This opens a new insight for novel generalised Presentation Attack Detection on ID cards to unknown attacks.
Abstract:This paper summarises the Competition on Presentation Attack Detection on ID Cards (PAD-IDCard) held at the 2024 International Joint Conference on Biometrics (IJCB2024). The competition attracted a total of ten registered teams, both from academia and industry. In the end, the participating teams submitted five valid submissions, with eight models to be evaluated by the organisers. The competition presented an independent assessment of current state-of-the-art algorithms. Today, no independent evaluation on cross-dataset is available; therefore, this work determined the state-of-the-art on ID cards. To reach this goal, a sequestered test set and baseline algorithms were used to evaluate and compare all the proposals. The sequestered test dataset contains ID cards from four different countries. In summary, a team that chose to be "Anonymous" reached the best average ranking results of 74.80%, followed very closely by the "IDVC" team with 77.65%.
Abstract:In the last few years, face morphing has been shown to be a complex challenge for Face Recognition Systems (FRS). Thus, the evaluation of other biometric modalities such as fingerprint, iris, and others must be explored and evaluated to enhance biometric systems. This work proposes an end-to-end framework to produce iris morphs at the image level, creating morphs from Periocular iris images. This framework considers different stages such as pair subject selection, segmentation, morph creation, and a new iris recognition system. In order to create realistic morphed images, two approaches for subject selection are explored: random selection and similar radius size selection. A vulnerability analysis and a Single Morphing Attack Detection algorithm were also explored. The results show that this approach obtained very realistic images that can confuse conventional iris recognition systems.
Abstract:Morphing Attack Detection (MAD) is a relevant topic that aims to detect attempts by unauthorised individuals to access a "valid" identity. One of the main scenarios is printing morphed images and submitting the respective print in a passport application process. Today, small datasets are available to train the MAD algorithm because of privacy concerns and the limitations resulting from the effort associated with the printing and scanning of images at large numbers. In order to improve the detection capabilities and spot such morphing attacks, it will be necessary to have a larger and more realistic dataset representing the passport application scenario with the diversity of devices and the resulting printed scanned or compressed images. Creating training data representing the diversity of attacks is a very demanding task because the training material is developed manually. This paper proposes two different methods based on transfer-transfer for automatically creating digital print/scan face images and using such images in the training of a Morphing Attack Detection algorithm. Our proposed method can reach an Equal Error Rate (EER) of 3.84% and 1.92% on the FRGC/FERET database when including our synthetic and texture-transfer print/scan with 600 dpi to handcrafted images, respectively.