Abstract:A central problem in one-to-many facial identification is that the person in the probe image may or may not have enrolled image(s) in the gallery; that is, may be In-gallery or Out-of-gallery. Past approaches to detect when a rank-one result is Out-of-gallery have mostly focused on finding a suitable threshold on the similarity score. We take a new approach, using the additional enrolled images of the identity with the rank-one result to predict if the rank-one result is In-gallery / Out-of-gallery. Given a gallery of identities and images, we generate In-gallery and Out-of-gallery training data by extracting the ranks of additional enrolled images corresponding to the rank-one identity. We then train a classifier to utilize this feature vector to predict whether a rank-one result is In-gallery or Out-of-gallery. Using two different datasets and four different matchers, we present experimental results showing that our approach is viable for mugshot quality probe images, and also, importantly, for probes degraded by blur, reduced resolution, atmospheric turbulence and sunglasses. We also analyze results across demographic groups, and show that In-gallery / Out-of-gallery classification accuracy is similar across demographics. Our approach has the potential to provide an objective estimate of whether a one-to-many facial identification is Out-of-gallery, and thereby to reduce false positive identifications, wrongful arrests, and wasted investigative time. Interestingly, comparing the results of older deep CNN-based face matchers with newer ones suggests that the effectiveness of our Out-of-gallery detection approach emerges only with matchers trained using advanced margin-based loss functions.
Abstract:Ear recognition has gained attention as a reliable biometric technique due to the distinctive characteristics of human ears. With the increasing availability of large-scale datasets, convolutional neural networks (CNNs) have been widely adopted to learn features directly from raw ear images, outperforming traditional hand-crafted methods. However, the effect of bilateral ear symmetry on the features learned by CNNs has received little attention in recent studies. In this paper, we investigate how bilateral ear symmetry influences the effectiveness of CNN-based ear recognition. To this end, we first develop an ear side classifier to automatically categorize ear images as either left or right. We then explore the impact of incorporating this side information during both training and test. Cross-dataset evaluations are conducted on five datasets. Our results suggest that treating left and right ears separately during training and testing can lead to notable performance improvements. Furthermore, our ablation studies on alignment strategies, input sizes, and various hyperparameter settings provide practical insights into training CNN-based ear recognition systems on large-scale datasets to achieve higher verification rates.
Abstract:When synthesizing identities as face recognition training data, it is generally believed that large inter-class separability and intra-class attribute variation are essential for synthesizing a quality dataset. % This belief is generally correct, and this is what we aim for. However, when increasing intra-class variation, existing methods overlook the necessity of maintaining intra-class identity consistency. % To address this and generate high-quality face training data, we propose Vec2Face+, a generative model that creates images directly from image features and allows for continuous and easy control of face identities and attributes. Using Vec2Face+, we obtain datasets with proper inter-class separability and intra-class variation and identity consistency using three strategies: 1) we sample vectors sufficiently different from others to generate well-separated identities; 2) we propose an AttrOP algorithm for increasing general attribute variations; 3) we propose LoRA-based pose control for generating images with profile head poses, which is more efficient and identity-preserving than AttrOP. % Our system generates VFace10K, a synthetic face dataset with 10K identities, which allows an FR model to achieve state-of-the-art accuracy on seven real-world test sets. Scaling the size to 4M and 12M images, the corresponding VFace100K and VFace300K datasets yield higher accuracy than the real-world training dataset, CASIA-WebFace, on five real-world test sets. This is the first time a synthetic dataset beats the CASIA-WebFace in average accuracy. In addition, we find that only 1 out of 11 synthetic datasets outperforms random guessing (\emph{i.e., 50\%}) in twin verification and that models trained with synthetic identities are more biased than those trained with real identities. Both are important aspects for future investigation.
Abstract:Ear recognition has emerged as a promising biometric modality due to the relative stability in appearance during adulthood. Although Vision Transformers (ViTs) have been widely used in image recognition tasks, their efficiency in ear recognition has been hampered by a lack of attention to overlapping patches, which is crucial for capturing intricate ear features. In this study, we evaluate ViT-Tiny (ViT-T), ViT-Small (ViT-S), ViT-Base (ViT-B) and ViT-Large (ViT-L) configurations on a diverse set of datasets (OPIB, AWE, WPUT, and EarVN1.0), using an overlapping patch selection strategy. Results demonstrate the critical importance of overlapping patches, yielding superior performance in 44 of 48 experiments in a structured study. Moreover, upon comparing the results of the overlapping patches with the non-overlapping configurations, the increase is significant, reaching up to 10% for the EarVN1.0 dataset. In terms of model performance, the ViT-T model consistently outperformed the ViT-S, ViT-B, and ViT-L models on the AWE, WPUT, and EarVN1.0 datasets. The highest scores were achieved in a configuration with a patch size of 28x28 and a stride of 14 pixels. This patch-stride configuration represents 25% of the normalized image area (112x112 pixels) for the patch size and 12.5% of the row or column size for the stride. This study confirms that transformer architectures with overlapping patch selection can serve as an efficient and high-performing option for ear-based biometric recognition tasks in verification scenarios.
Abstract:Automated one-to-many (1:N) face recognition is a powerful investigative tool commonly used by law enforcement agencies. In this context, potential matches resulting from automated 1:N recognition are reviewed by human examiners prior to possible use as investigative leads. While automated 1:N recognition can achieve near-perfect accuracy under ideal imaging conditions, operational scenarios may necessitate the use of surveillance imagery, which is often degraded in various quality dimensions. One important quality dimension is image resolution, typically quantified by the number of pixels on the face. The common metric for this is inter-pupillary distance (IPD), which measures the number of pixels between the pupils. Low IPD is known to degrade the accuracy of automated face recognition. However, the threshold IPD for reliability in human face recognition remains undefined. This study aims to explore the boundaries of human recognition accuracy by systematically testing accuracy across a range of IPD values. We find that at low IPDs (10px, 5px), human accuracy is at or below chance levels (50.7%, 35.9%), even as confidence in decision-making remains relatively high (77%, 70.7%). Our findings indicate that, for low IPD images, human recognition ability could be a limiting factor to overall system accuracy.
Abstract:In Daugman-style iris recognition, the textures of the left and right irises of the same person are traditionally considered as being as different as the irises of two unrelated persons. However, previous research indicates that humans can detect that two iris images are from different eyes of the same person, or eyes of monozygotic twins, with an accuracy of about 80%. In this work, we employ a Siamese network architecture and contrastive learning to categorize a pair of iris images as coming from monozygotic or non-monozygotic irises. This could potentially be applied, for example, as a fast, noninvasive test to determine if twins are monozygotic or non-monozygotic. We construct a dataset comprising both synthetic monozygotic pairs (images of different irises of the same individual) and natural monozygotic pairs (images of different images from persons who are identical twins), in addition to non-monozygotic pairs from unrelated individuals, ensuring a comprehensive evaluation of the model's capabilities. To gain deeper insights into the learned representations, we train and analyze three variants of the model using (1) the original input images, (2) iris-only images, and (3) non-iris-only images. This comparison reveals the critical importance of iris-specific textural details and contextual ocular cues in identifying monozygotic iris patterns. The results demonstrate that models leveraging full eye-region information outperform those trained solely on iris-only data, emphasizing the nuanced interplay between iris and ocular characteristics. Our approach achieves accuracy levels using the full iris image that exceed those previously reported for human classification of monozygotic iris pairs. This study presents the first classifier designed to determine whether a pair of iris images originates from monozygotic individuals.
Abstract:Face recognition systems (FRS) exhibit significant accuracy differences based on the user's gender. Since such a gender gap reduces the trustworthiness of FRS, more recent efforts have tried to find the causes. However, these studies make use of manually selected, correlated, and small-sized sets of facial features to support their claims. In this work, we analyse gender bias in face recognition by successfully extending the search domain to decorrelated combinations of 40 non-demographic facial characteristics. First, we propose a toolchain to effectively decorrelate and aggregate facial attributes to enable a less-biased gender analysis on large-scale data. Second, we introduce two new fairness metrics to measure fairness with and without context. Based on these grounds, we thirdly present a novel unsupervised algorithm able to reliably identify attribute combinations that lead to vanishing bias when used as filter predicates for balanced testing datasets. The experiments show that the gender gap vanishes when images of male and female subjects share specific attributes, clearly indicating that the issue is not a question of biology but of the social definition of appearance. These findings could reshape our understanding of fairness in face biometrics and provide insights into FRS, helping to address gender bias issues.
Abstract:Facial brightness is a key image quality factor impacting face recognition accuracy differentials across demographic groups. In this work, we aim to decrease the accuracy gap between the similarity score distributions for Caucasian and African American female mated image pairs, as measured by d' between distributions. To balance brightness across demographic groups, we conduct three experiments, interpreting brightness in the face skin region either as median pixel value or as the distribution of pixel values. Balancing based on median brightness alone yields up to a 46.8% decrease in d', while balancing based on brightness distribution yields up to a 57.6% decrease. In all three cases, the similarity scores of the individual distributions improve, with mean scores maximally improving 5.9% for Caucasian females and 3.7% for African American females.
Abstract:One-to-many facial identification is documented to achieve high accuracy in the case where both the probe and the gallery are `mugshot quality' images. However, an increasing number of documented instances of wrongful arrest following one-to-many facial identification have raised questions about its accuracy. Probe images used in one-to-many facial identification are often cropped from frames of surveillance video and deviate from `mugshot quality' in various ways. This paper systematically explores how the accuracy of one-to-many facial identification is degraded by the person in the probe image choosing to wear dark sunglasses. We show that sunglasses degrade accuracy for mugshot-quality images by an amount similar to strong blur or noticeably lower resolution. Further, we demonstrate that the combination of sunglasses with blur or lower resolution results in even more pronounced loss in accuracy. These results have important implications for developing objective criteria to qualify a probe image for the level of accuracy to be expected if it used for one-to-many identification. To ameliorate the accuracy degradation caused by dark sunglasses, we show that it is possible to recover about 38% of the lost accuracy by synthetically adding sunglasses to all the gallery images, without model re-training. We also show that increasing the representation of wearing-sunglasses images in the training set can largely reduce the error rate. The image set assembled for this research will be made available to support replication and further research into this problem.
Abstract:This work explores how human judgement about salient regions of an image can be introduced into deep convolutional neural network (DCNN) training. Traditionally, training of DCNNs is purely data-driven. This often results in learning features of the data that are only coincidentally correlated with class labels. Human saliency can guide network training using our proposed new component of the loss function that ConveYs Brain Oversight to Raise Generalization (CYBORG) and penalizes the model for using non-salient regions. This mechanism produces DCNNs achieving higher accuracy and generalization compared to using the same training data without human salience. Experimental results demonstrate that CYBORG applies across multiple network architectures and problem domains (detection of synthetic faces, iris presentation attacks and anomalies in chest X-rays), while requiring significantly less data than training without human saliency guidance. Visualizations show that CYBORG-trained models' saliency is more consistent across independent training runs than traditionally-trained models, and also in better agreement with humans. To lower the cost of collecting human annotations, we also explore using deep learning to provide automated annotations. CYBORG training of CNNs addresses important issues such as reducing the appetite for large training sets, increasing interpretability, and reducing fragility by generalizing better to new types of data.