Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
NeoN, a tool for detecting and analyzing Polish neologisms. Unlike traditional dictionary-based methods requiring extensive manual review, NeoN combines reference corpora, Polish-specific linguistic filters, an LLM-driven precision-boosting filter, and daily RSS monitoring in a multi-layered pipeline. The system uses context-aware lemmatization, frequency analysis, and orthographic normalization to extract candidate neologisms while consolidating inflectional variants. Researchers can verify candidates through an intuitive interface with visualizations and filtering controls. An integrated LLM module automatically generates definitions and categorizes neologisms by domain and sentiment. Evaluations show NeoN maintains high accuracy while significantly reducing manual effort, providing an accessible solution for tracking lexical innovation in Polish.
Language models based on the Transformer architecture achieve excellent results in many language-related tasks, such as text classification or sentiment analysis. However, despite the architecture of these models being well-defined, little is known about how their internal computations help them achieve their results. This renders these models, as of today, a type of 'black box' systems. There is, however, a line of research -- 'interpretability' -- aiming to learn how information is encoded inside these models. More specifically, there is work dedicated to studying whether Transformer-based models possess knowledge of linguistic phenomena similar to human speakers -- an area we call 'linguistic interpretability' of these models. In this survey we present a comprehensive analysis of 160 research works, spread across multiple languages and models -- including multilingual ones -- that attempt to discover linguistic information from the perspective of several traditional Linguistics disciplines: Syntax, Morphology, Lexico-Semantics and Discourse. Our survey fills a gap in the existing interpretability literature, which either not focus on linguistic knowledge in these models or present some limitations -- e.g. only studying English-based models. Our survey also focuses on Pre-trained Language Models not further specialized for a downstream task, with an emphasis on works that use interpretability techniques that explore models' internal representations.
We present BiasLab, a dataset of 300 political news articles annotated for perceived ideological bias. These articles were selected from a curated 900-document pool covering diverse political events and source biases. Each article is labeled by crowdworkers along two independent scales, assessing sentiment toward the Democratic and Republican parties, and enriched with rationale indicators. The annotation pipeline incorporates targeted worker qualification and was refined through pilot-phase analysis. We quantify inter-annotator agreement, analyze misalignment with source-level outlet bias, and organize the resulting labels into interpretable subsets. Additionally, we simulate annotation using schema-constrained GPT-4o, enabling direct comparison to human labels and revealing mirrored asymmetries, especially in misclassifying subtly right-leaning content. We define two modeling tasks: perception drift prediction and rationale type classification, and report baseline performance to illustrate the challenge of explainable bias detection. BiasLab's rich rationale annotations provide actionable interpretations that facilitate explainable modeling of political bias, supporting the development of transparent, socially aware NLP systems. We release the dataset, annotation schema, and modeling code to encourage research on human-in-the-loop interpretability and the evaluation of explanation effectiveness in real-world settings.
Large Language models (LLMs) have been prominent for language translation, including low-resource languages. There has been limited study about the assessment of the quality of translations generated by LLMs, including Gemini, GPT and Google Translate. In this study, we address this limitation by using semantic and sentiment analysis of selected LLMs for Indian languages, including Sanskrit, Telugu and Hindi. We select prominent texts that have been well translated by experts and use LLMs to generate their translations to English, and then we provide a comparison with selected expert (human) translations. Our findings suggest that while LLMs have made significant progress in translation accuracy, challenges remain in preserving sentiment and semantic integrity, especially in figurative and philosophical contexts. The sentiment analysis revealed that GPT-4o and GPT-3.5 are better at preserving the sentiments for the Bhagavad Gita (Sanskrit-English) translations when compared to Google Translate. We observed a similar trend for the case of Tamas (Hindi-English) and Maha P (Telugu-English) translations. GPT-4o performs similarly to GPT-3.5 in the translation in terms of sentiments for the three languages. We found that LLMs are generally better at translation for capturing sentiments when compared to Google Translate.
User engagement on social media platforms is influenced by historical context, time constraints, and reward-driven interactions. This study presents an agent-based simulation approach that models user interactions, considering past conversation history, motivation, and resource constraints. Utilizing German Twitter data on political discourse, we fine-tune AI models to generate posts and replies, incorporating sentiment analysis, irony detection, and offensiveness classification. The simulation employs a myopic best-response model to govern agent behavior, accounting for decision-making based on expected rewards. Our results highlight the impact of historical context on AI-generated responses and demonstrate how engagement evolves under varying constraints.
One fundamental question for the social sciences today is: how much can we trust highly complex predictive models like ChatGPT? This study tests the hypothesis that subtle changes in the structure of prompts do not produce significant variations in the classification results of sentiment polarity analysis generated by the Large Language Model GPT-4o mini. Using a dataset of 100.000 comments in Spanish on four Latin American presidents, the model classified the comments as positive, negative, or neutral on 10 occasions, varying the prompts slightly each time. The experimental methodology included exploratory and confirmatory analyses to identify significant discrepancies among classifications. The results reveal that even minor modifications to prompts such as lexical, syntactic, or modal changes, or even their lack of structure impact the classifications. In certain cases, the model produced inconsistent responses, such as mixing categories, providing unsolicited explanations, or using languages other than Spanish. Statistical analysis using Chi-square tests confirmed significant differences in most comparisons between prompts, except in one case where linguistic structures were highly similar. These findings challenge the robustness and trust of Large Language Models for classification tasks, highlighting their vulnerability to variations in instructions. Moreover, it was evident that the lack of structured grammar in prompts increases the frequency of hallucinations. The discussion underscores that trust in Large Language Models is based not only on technical performance but also on the social and institutional relationships underpinning their use.
Large Language Models (LLMs) remain difficult to evaluate comprehensively, particularly for languages other than English, where high-quality data is often limited. Existing benchmarks and leaderboards are predominantly English-centric, with only a few addressing other languages. These benchmarks fall short in several key areas: they overlook the diversity of language varieties, prioritize fundamental Natural Language Processing (NLP) capabilities over tasks of industrial relevance, and are static. With these aspects in mind, we present IberBench, a comprehensive and extensible benchmark designed to assess LLM performance on both fundamental and industry-relevant NLP tasks, in languages spoken across the Iberian Peninsula and Ibero-America. IberBench integrates 101 datasets from evaluation campaigns and recent benchmarks, covering 22 task categories such as sentiment and emotion analysis, toxicity detection, and summarization. The benchmark addresses key limitations in current evaluation practices, such as the lack of linguistic diversity and static evaluation setups by enabling continual updates and community-driven model and dataset submissions moderated by a committee of experts. We evaluate 23 LLMs ranging from 100 million to 14 billion parameters and provide empirical insights into their strengths and limitations. Our findings indicate that (i) LLMs perform worse on industry-relevant tasks than in fundamental ones, (ii) performance is on average lower for Galician and Basque, (iii) some tasks show results close to random, and (iv) in other tasks LLMs perform above random but below shared task systems. IberBench offers open-source implementations for the entire evaluation pipeline, including dataset normalization and hosting, incremental evaluation of LLMs, and a publicly accessible leaderboard.
Peer review is vital in academia for evaluating research quality. Top AI conferences use reviewer confidence scores to ensure review reliability, but existing studies lack fine-grained analysis of text-score consistency, potentially missing key details. This work assesses consistency at word, sentence, and aspect levels using deep learning and NLP conference review data. We employ deep learning to detect hedge sentences and aspects, then analyze report length, hedge word/sentence frequency, aspect mentions, and sentiment to evaluate text-score alignment. Correlation, significance, and regression tests examine confidence scores' impact on paper outcomes. Results show high text-score consistency across all levels, with regression revealing higher confidence scores correlate with paper rejection, validating expert assessments and peer review fairness.
Central bank communication plays a critical role in shaping economic expectations and monetary policy effectiveness. This study applies supervised machine learning techniques to classify the sentiment of press releases from the Bank of Thailand, addressing gaps in research that primarily focus on lexicon-based approaches. My findings show that supervised learning can be an effective method, even with smaller datasets, and serves as a starting point for further automation. However, achieving higher accuracy and better generalization requires a substantial amount of labeled data, which is time-consuming and demands expertise. Using models such as Na\"ive Bayes, Random Forest and SVM, this study demonstrates the applicability of machine learning for central bank sentiment analysis, with English-language communications from the Thai Central Bank as a case study.
Chatbots powered by artificial intelligence (AI) have rapidly become a significant part of everyday life, with over a quarter of American adults using them multiple times per week. While these tools offer potential benefits and risks, a fundamental question remains largely unexplored: How do conversations with AI influence subjective well-being? To investigate this, we conducted a study where participants either engaged in conversations with an AI chatbot (N = 334) or wrote journal entires (N = 193) on the same randomly assigned topics and reported their momentary happiness afterward. We found that happiness after AI chatbot conversations was higher than after journaling, particularly when discussing negative topics such as depression or guilt. Leveraging large language models for sentiment analysis, we found that the AI chatbot mirrored participants' sentiment while maintaining a consistent positivity bias. When discussing negative topics, participants gradually aligned their sentiment with the AI's positivity, leading to an overall increase in happiness. We hypothesized that the history of participants' sentiment prediction errors, the difference between expected and actual emotional tone when responding to the AI chatbot, might explain this happiness effect. Using computational modeling, we find the history of these sentiment prediction errors over the course of a conversation predicts greater post-conversation happiness, demonstrating a central role of emotional expectations during dialogue. Our findings underscore the effect that AI interactions can have on human well-being.