Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Reinforcement learning (RL) has emerged as a powerful framework for improving the reasoning capabilities of large language models (LLMs). However, most existing RL approaches rely on sparse outcome rewards, which fail to credit correct intermediate steps in partially successful solutions. Process reward models (PRMs) offer fine-grained step-level supervision, but their scores are often noisy and difficult to evaluate. As a result, recent PRM benchmarks focus on a more objective capability: detecting the first incorrect step in a reasoning path. However, this evaluation target is misaligned with how PRMs are typically used in RL, where their step-wise scores are treated as raw rewards to maximize. To bridge this gap, we propose Verifiable Prefix Policy Optimization (VPPO), which uses PRMs only to localize the first error during RL. Given an incorrect rollout, VPPO partitions the trajectory into a verified correct prefix and an erroneous suffix based on the first error, rewarding the former while applying targeted penalties only after the detected mistake. This design yields stable, interpretable learning signals and improves credit assignment. Across multiple reasoning benchmarks, VPPO consistently outperforms sparse-reward RL and prior PRM-guided baselines on both Pass@1 and Pass@K.
The Controller Area Network (CAN) bus provides a rich source of vehicular signals increasingly leveraged for applications in automotive and auto insurance domains, including collision detection, predictive maintenance, and driver risk modeling. Despite this potential, existing pipelines largely train isolated task-specific models on raw CAN data, with only limited efforts exploring decoded signals. Such fragmentation prevents shared representation learning and limits cross-task generalization. By contrast, natural language processing (NLP) and computer vision (CV) have been transformed by the foundation model paradigm: large-scale pretraining followed by task-specific adaptation. In this work, we introduce the foundation CAN model that demonstrates multi-objective downstream generalization using a single pretrained backbone. Our approach treats CAN data as a language: we pretrain on large-scale, unlabeled decoded CAN signals and fine-tune across heterogeneous auto insurance tasks. To enable this, we propose a unified tokenization scheme for mixed discrete-continuous signals and address challenges of temporal complexity and trip-specific variability. Our results show that one pretrained CAN model can adapt effectively to diverse predictive tasks, validating that the foundation modeling paradigm, proven in NLP and CV, also holds for CAN data. This establishes a new direction for generalizable representation learning in automotive AI.
Sustainability reports are critical for ESG assessment, yet greenwashing and vague claims often undermine their reliability. Existing NLP models lack robustness to these practices, typically relying on surface-level patterns that generalize poorly. We propose a parameter-efficient framework that structures LLM latent spaces by combining contrastive learning with an ordinal ranking objective to capture graded distinctions between concrete actions and ambiguous claims. Our approach incorporates gated feature modulation to filter disclosure noise and utilizes MetaGradNorm to stabilize multi-objective optimization. Experiments in cross-category settings demonstrate superior robustness over standard baselines while revealing a trade-off between representational rigidity and generalization.
Current mobile manipulation research predominantly follows an instruction-driven paradigm, where agents rely on predefined textual commands to execute tasks. However, this setting confines agents to a passive role, limiting their autonomy and ability to react to dynamic environmental events. To address these limitations, we introduce sound-triggered mobile manipulation, where agents must actively perceive and interact with sound-emitting objects without explicit action instructions. To support these tasks, we develop Habitat-Echo, a data platform that integrates acoustic rendering with physical interaction. We further propose a baseline comprising a high-level task planner and low-level policy models to complete these tasks. Extensive experiments show that the proposed baseline empowers agents to actively detect and respond to auditory events, eliminating the need for case-by-case instructions. Notably, in the challenging dual-source scenario, the agent successfully isolates the primary source from overlapping acoustic interference to execute the first interaction, and subsequently proceeds to manipulate the secondary object, verifying the robustness of the baseline.
Deep topological data analysis (TDA) offers a principled framework for capturing structural invariants such as connectivity and cycles that persist across scales, making it a natural fit for anomaly segmentation (AS). Unlike thresholdbased binarisation, which produces brittle masks under distribution shift, TDA allows anomalies to be characterised as disruptions to global structure rather than local fluctuations. We introduce TopoOT, a topology-aware optimal transport (OT) framework that integrates multi-filtration persistence diagrams (PDs) with test-time adaptation (TTA). Our key innovation is Optimal Transport Chaining, which sequentially aligns PDs across thresholds and filtrations, yielding geodesic stability scores that identify features consistently preserved across scales. These stabilityaware pseudo-labels supervise a lightweight head trained online with OT-consistency and contrastive objectives, ensuring robust adaptation under domain shift. Across standard 2D and 3D anomaly detection benchmarks, TopoOT achieves state-of-the-art performance, outperforming the most competitive methods by up to +24.1% mean F1 on 2D datasets and +10.2% on 3D AS benchmarks.
Frontier language model agents can exhibit misaligned behaviors, including deception, exploiting reward hacks, and pursuing hidden objectives. To control potentially misaligned agents, we can use LLMs themselves to monitor for misbehavior. In this paper, we study how information access affects LLM monitor performance. While one might expect that monitors perform better when they have access to more of the monitored agents' reasoning and actions, we find that contemporary systems often perform better with less information, a phenomenon we call the less-is-more effect for automated oversight. We demonstrate this phenomenon, and analyze the conditions under which it occurs, in three evaluation environments where agents must conduct sabotage while evading monitors. Motivated by the less-is-more effect, we introduce extract-and-evaluate (EaE) monitoring--a new hierarchical approach where one monitor isolates relevant excerpts from the monitored agent's trajectory and a separate monitor scores them. In BigCodeBench-Sabotage with GPT-4.1-mini as the monitor model, EaE improves sabotage detection rates by 16.8 percentage points over the next-best monitor without increasing the false positive rate. In other settings, EaE either outperforms or is competitive with baselines. In addition, we find that agents unaware of being monitored can be caught much more easily and that monitors scoring longer reasoning traces gain more from information filtering. Lastly, we conduct a cost-performance analysis and find that Gemini and Claude models with monitoring techniques that involve information filtering occupy much of the Pareto frontier.
The viability of automated driving is heavily dependent on the performance of perception systems to provide real-time accurate and reliable information for robust decision-making and maneuvers. These systems must perform reliably not only under ideal conditions, but also when challenged by natural and adversarial driving factors. Both of these types of interference can lead to perception errors and delays in detection and classification. Hence, it is essential to assess the robustness of the perception systems of automated vehicles (AVs) and explore strategies for making perception more reliable. We approach this problem by evaluating perception performance using predictive sensitivity quantification based on an ensemble of models, capturing model disagreement and inference variability across multiple models, under adverse driving scenarios in both simulated environments and real-world conditions. A notional architecture for assessing perception performance is proposed. A perception assessment criterion is developed based on an AV's stopping distance at a stop sign on varying road surfaces, such as dry and wet asphalt, and vehicle speed. Five state-of-the-art computer vision models are used, including YOLO (v8-v9), DEtection TRansformer (DETR50, DETR101), Real-Time DEtection TRansformer (RT-DETR)in our experiments. Diminished lighting conditions, e.g., resulting from the presence of fog and low sun altitude, have the greatest impact on the performance of the perception models. Additionally, adversarial road conditions such as occlusions of roadway objects increase perception sensitivity and model performance drops when faced with a combination of adversarial road conditions and inclement weather conditions. Also, it is demonstrated that the greater the distance to a roadway object, the greater the impact on perception performance, hence diminished perception robustness.
The development of large language models (LLMs) is costly and has significant commercial value. Consequently, preventing unauthorized appropriation of open-source LLMs and protecting developers' intellectual property rights have become critical challenges. In this work, we propose the Functional Network Fingerprint (FNF), a training-free, sample-efficient method for detecting whether a suspect LLM is derived from a victim model, based on the consistency between their functional network activity. We demonstrate that models that share a common origin, even with differences in scale or architecture, exhibit highly consistent patterns of neuronal activity within their functional networks across diverse input samples. In contrast, models trained independently on distinct data or with different objectives fail to preserve such activity alignment. Unlike conventional approaches, our method requires only a few samples for verification, preserves model utility, and remains robust to common model modifications (such as fine-tuning, pruning, and parameter permutation), as well as to comparisons across diverse architectures and dimensionalities. FNF thus provides model owners and third parties with a simple, non-invasive, and effective tool for protecting LLM intellectual property. The code is available at https://github.com/WhatAboutMyStar/LLM_ACTIVATION.
Internet memes have become pervasive carriers of digital culture on social platforms. However, their heavy reliance on metaphors and sociocultural context also makes them subtle vehicles for harmful content, posing significant challenges for automated content moderation. Existing approaches primarily focus on intra-modal and inter-modal signal analysis, while the understanding of implicit toxicity often depends on background knowledge that is not explicitly present in the meme itself. To address this challenge, we propose KID, a Knowledge-Injected Dual-Head Learning framework for knowledge-grounded harmful meme detection. KID adopts a label-constrained distillation paradigm to decompose complex meme understanding into structured reasoning chains that explicitly link visual evidence, background knowledge, and classification labels. These chains guide the learning process by grounding external knowledge in meme-specific contexts. In addition, KID employs a dual-head architecture that jointly optimizes semantic generation and classification objectives, enabling aligned linguistic reasoning while maintaining stable decision boundaries. Extensive experiments on five multilingual datasets spanning English, Chinese, and low-resource Bengali demonstrate that KID achieves SOTA performance on both binary and multi-label harmful meme detection tasks, improving over previous best methods by 2.1%--19.7% across primary evaluation metrics. Ablation studies further confirm the effectiveness of knowledge injection and dual-head joint learning, highlighting their complementary contributions to robust and generalizable meme understanding. The code and data are available at https://github.com/PotatoDog1669/KID.
The prevalence of sarcasm in multimodal dialogues on the social platforms presents a crucial yet challenging task for understanding the true intent behind online content. Comprehensive sarcasm analysis requires two key aspects: Multimodal Sarcasm Detection (MSD) and Multimodal Sarcasm Explanation (MuSE). Intuitively, the act of detection is the result of the reasoning process that explains the sarcasm. Current research predominantly focuses on addressing either MSD or MuSE as a single task. Even though some recent work has attempted to integrate these tasks, their inherent causal dependency is often overlooked. To bridge this gap, we propose MuVaC, a variational causal inference framework that mimics human cognitive mechanisms for understanding sarcasm, enabling robust multimodal feature learning to jointly optimize MSD and MuSE. Specifically, we first model MSD and MuSE from the perspective of structural causal models, establishing variational causal pathways to define the objectives for joint optimization. Next, we design an alignment-then-fusion approach to integrate multimodal features, providing robust fusion representations for sarcasm detection and explanation generation. Finally, we enhance the reasoning trustworthiness by ensuring consistency between detection results and explanations. Experimental results demonstrate the superiority of MuVaC in public datasets, offering a new perspective for understanding multimodal sarcasm.