Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Recent advances in 3D scene representations have enabled high-fidelity novel view synthesis, yet adapting to discrete scene changes and constructing interactive 3D environments remain open challenges in vision and robotics. Existing approaches focus solely on updating a single scene without supporting novel-state synthesis. Others rely on diffusion-based object-background decoupling that works on one state at a time and cannot fuse information across multiple observations. To address these limitations, we introduce RecurGS, a recurrent fusion framework that incrementally integrates discrete Gaussian scene states into a single evolving representation capable of interaction. RecurGS detects object-level changes across consecutive states, aligns their geometric motion using semantic correspondence and Lie-algebra based SE(3) refinement, and performs recurrent updates that preserve historical structures through replay supervision. A voxelized, visibility-aware fusion module selectively incorporates newly observed regions while keeping stable areas fixed, mitigating catastrophic forgetting and enabling efficient long-horizon updates. RecurGS supports object-level manipulation, synthesizes novel scene states without requiring additional scans, and maintains photorealistic fidelity across evolving environments. Extensive experiments across synthetic and real-world datasets demonstrate that our framework delivers high-quality reconstructions with substantially improved update efficiency, providing a scalable step toward continuously interactive Gaussian worlds.
Detecting infrared gas leaks is critical for environmental monitoring and industrial safety, yet remains difficult because plumes are faint, small, semitransparent, and have weak, diffuse boundaries. We present physics-edge hybrid gas dynamic routing network (PEG-DRNet). First, we introduce the Gas Block, a diffusion-convection unit modeling gas transport: a local branch captures short-range variations, while a large-kernel branch captures long-range propagation. An edge-gated learnable fusion module balances local detail and global context, strengthening weak-contrast plume and contour cues. Second, we propose the adaptive gradient and phase edge operator (AGPEO), computing reliable edge priors from multi-directional gradients and phase-consistent responses. These are transformed by a multi-scale edge perception module (MSEPM) into hierarchical edge features that reinforce boundaries. Finally, the content-adaptive sparse routing path aggregation network (CASR-PAN), with adaptive information modulation modules for fusion and self, selectively propagates informative features across scales based on edge and content cues, improving cross-scale discriminability while reducing redundancy. Experiments on the IIG dataset show that PEG-DRNet achieves an overall AP of 29.8\%, an AP$_{50}$ of 84.3\%, and a small-object AP of 25.3\%, surpassing the RT-DETR-R18 baseline by 3.0\%, 6.5\%, and 5.3\%, respectively, while requiring only 43.7 Gflops and 14.9 M parameters. The proposed PEG-DRNet achieves superior overall performance with the best balance of accuracy and computational efficiency, outperforming existing CNN and Transformer detectors in AP and AP$_{50}$ on the IIG and LangGas dataset.




Multi-agent collaborative perception (CP) is a promising paradigm for improving autonomous driving safety, particularly for vulnerable road users like pedestrians, via robust 3D perception. However, existing CP approaches often optimize for vehicle detection performance metrics, underperforming on smaller, safety-critical objects such as pedestrians, where detection failures can be catastrophic. Furthermore, previous CP methods rely on full feature exchange rather than communicating only salient features that help reduce false negatives. To this end, we present FocalComm, a novel collaborative perception framework that focuses on exchanging hard-instance-oriented features among connected collaborative agents. FocalComm consists of two key novel designs: (1) a learnable progressive hard instance mining (HIM) module to extract hard instance-oriented features per agent, and (2) a query-based feature-level (intermediate) fusion technique that dynamically weights these identified features during collaboration. We show that FocalComm outperforms state-of-the-art collaborative perception methods on two challenging real-world datasets (V2X-Real and DAIR-V2X) across both vehicle-centric and infrastructure-centric collaborative setups. FocalComm also shows a strong performance gain in pedestrian detection in V2X-Real.




Remote sensing image change detection is one of the fundamental tasks in remote sensing intelligent interpretation. Its core objective is to identify changes within change regions of interest (CRoI). Current multimodal large models encode rich human semantic knowledge, which is utilized for guidance in tasks such as remote sensing change detection. However, existing methods that use semantic guidance for detecting users' CRoI overly rely on explicit textual descriptions of CRoI, leading to the problem of near-complete performance failure when presented with implicit CRoI textual descriptions. This paper proposes a multimodal reasoning change detection model named ReasonCD, capable of mining users' implicit task intent. The model leverages the powerful reasoning capabilities of pre-trained large language models to mine users' implicit task intents and subsequently obtains different change detection results based on these intents. Experiments on public datasets demonstrate that the model achieves excellent change detection performance, with an F1 score of 92.1\% on the BCDD dataset. Furthermore, to validate its superior reasoning functionality, this paper annotates a subset of reasoning data based on the SECOND dataset. Experimental results show that the model not only excels at basic reasoning-based change detection tasks but can also explain the reasoning process to aid human decision-making.
Low-shot object counting addresses estimating the number of previously unobserved objects in an image using only few or no annotated test-time exemplars. A considerable challenge for modern low-shot counters are dense regions with small objects. While total counts in such situations are typically well addressed by density-based counters, their usefulness is limited by poor localization capabilities. This is better addressed by point-detection-based counters, which are based on query-based detectors. However, due to limited number of pre-trained queries, they underperform on images with very large numbers of objects, and resort to ad-hoc techniques like upsampling and tiling. We propose CoDi, the first latent diffusion-based low-shot counter that produces high-quality density maps on which object locations can be determined by non-maxima suppression. Our core contribution is the new exemplar-based conditioning module that extracts and adjusts the object prototypes to the intermediate layers of the denoising network, leading to accurate object location estimation. On FSC benchmark, CoDi outperforms state-of-the-art by 15% MAE, 13% MAE and 10% MAE in the few-shot, one-shot, and reference-less scenarios, respectively, and sets a new state-of-the-art on MCAC benchmark by outperforming the top method by 44% MAE. The code is available at https://github.com/gsustar/CoDi.
Sophisticated text-centric forgeries, fueled by rapid AIGC advancements, pose a significant threat to societal security and information authenticity. Current methods for text-centric forgery analysis are often limited to coarse-grained visual analysis and lack the capacity for sophisticated reasoning. Moreover, they typically treat detection, grounding, and explanation as discrete sub-tasks, overlooking their intrinsic relationships for holistic performance enhancement. To address these challenges, we introduce LogicLens, a unified framework for Visual-Textual Co-reasoning that reformulates these objectives into a joint task. The deep reasoning of LogicLens is powered by our novel Cross-Cues-aware Chain of Thought (CCT) mechanism, which iteratively cross-validates visual cues against textual logic. To ensure robust alignment across all tasks, we further propose a weighted multi-task reward function for GRPO-based optimization. Complementing this framework, we first designed the PR$^2$ (Perceiver, Reasoner, Reviewer) pipeline, a hierarchical and iterative multi-agent system that generates high-quality, cognitively-aligned annotations. Then, we constructed RealText, a diverse dataset comprising 5,397 images with fine-grained annotations, including textual explanations, pixel-level segmentation, and authenticity labels for model training. Extensive experiments demonstrate the superiority of LogicLens across multiple benchmarks. In a zero-shot evaluation on T-IC13, it surpasses the specialized framework by 41.4% and GPT-4o by 23.4% in macro-average F1 score. Moreover, on the challenging dense-text T-SROIE dataset, it establishes a significant lead over other MLLM-based methods in mF1, CSS, and the macro-average F1. Our dataset, model, and code will be made publicly available.




Event-based cameras (ECs) have emerged as bio-inspired sensors that report pixel brightness changes asynchronously, offering unmatched speed and efficiency in vision sensing. Despite their high dynamic range, temporal resolution, low power consumption, and computational simplicity, traditional monochrome ECs face limitations in detecting static or slowly moving objects and lack color information essential for certain applications. To address these challenges, we present a novel approach that integrates a Digital Light Processing (DLP) projector, forming Active Structured Light (ASL) for RGB-D sensing. By combining the benefits of ECs and projection-based techniques, our method enables the detection of color and the depth of each pixel separately. Dynamic projection adjustments optimize bandwidth, ensuring selective color data acquisition and yielding colorful point clouds without sacrificing spatial resolution. This integration, facilitated by a commercial TI LightCrafter 4500 projector and a monocular monochrome EC, not only enables frameless RGB-D sensing applications but also achieves remarkable performance milestones. With our approach, we achieved a color detection speed equivalent to 1400 fps and 4 kHz of pixel depth detection, significantly advancing the realm of computer vision across diverse fields from robotics to 3D reconstruction methods. Our code is publicly available: https://github.com/MISTLab/event_based_rgbd_ros
Walking has always been a primary mode of transportation and is recognized as an essential activity for maintaining good health. Despite the need for safe walking conditions in urban environments, sidewalks are frequently obstructed by various obstacles that hinder free pedestrian movement. Any object obstructing a pedestrian's path can pose a safety hazard. The advancement of pervasive computing and egocentric vision techniques offers the potential to design systems that can automatically detect such obstacles in real time, thereby enhancing pedestrian safety. The development of effective and efficient identification algorithms relies on the availability of comprehensive and well-balanced datasets of egocentric data. In this work, we introduce the PEDESTRIAN dataset, comprising egocentric data for 29 different obstacles commonly found on urban sidewalks. A total of 340 videos were collected using mobile phone cameras, capturing a pedestrian's point of view. Additionally, we present the results of a series of experiments that involved training several state-of-the-art deep learning algorithms using the proposed dataset, which can be used as a benchmark for obstacle detection and recognition tasks. The dataset can be used for training pavement obstacle detectors to enhance the safety of pedestrians in urban areas.
We introduce Perception Encoder Audiovisual, PE-AV, a new family of encoders for audio and video understanding trained with scaled contrastive learning. Built on PE, PE-AV makes several key contributions to extend representations to audio, and natively support joint embeddings across audio-video, audio-text, and video-text modalities. PE-AV's unified cross-modal embeddings enable novel tasks such as speech retrieval, and set a new state of the art across standard audio and video benchmarks. We unlock this by building a strong audiovisual data engine that synthesizes high-quality captions for O(100M) audio-video pairs, enabling large-scale supervision consistent across modalities. Our audio data includes speech, music, and general sound effects-avoiding single-domain limitations common in prior work. We exploit ten pairwise contrastive objectives, showing that scaling cross-modality and caption-type pairs strengthens alignment and improves zero-shot performance. We further develop PE-A-Frame by fine-tuning PE-AV with frame-level contrastive objectives, enabling fine-grained audio-frame-to-text alignment for tasks such as sound event detection.
Objective: Atrial fibrillation (AF) is the most common cardiac arrhythmia experienced by intensive care unit (ICU) patients and can cause adverse health effects. In this study, we publish a labelled ICU dataset and benchmarks for AF detection. Methods: We compared machine learning models across three data-driven artificial intelligence (AI) approaches: feature-based classifiers, deep learning (DL), and ECG foundation models (FMs). This comparison addresses a critical gap in the literature and aims to pinpoint which AI approach is best for accurate AF detection. Electrocardiograms (ECGs) from a Canadian ICU and the 2021 PhysioNet/Computing in Cardiology Challenge were used to conduct the experiments. Multiple training configurations were tested, ranging from zero-shot inference to transfer learning. Results: On average and across both datasets, ECG FMs performed best, followed by DL, then feature-based classifiers. The model that achieved the top F1 score on our ICU test set was ECG-FM through a transfer learning strategy (F1=0.89). Conclusion: This study demonstrates promising potential for using AI to build an automatic patient monitoring system. Significance: By publishing our labelled ICU dataset (LinkToBeAdded) and performance benchmarks, this work enables the research community to continue advancing the state-of-the-art in AF detection in the ICU.