Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Current state of the art measures like BLEU, CIDEr, VQA score, SigLIP-2 and CLIPScore are often unable to capture semantic or structural accuracy, especially for domain-specific or context-dependent scenarios. For this, this paper proposes a Physics-Constrained Multimodal Data Evaluation (PCMDE) metric combining large language models with reasoning, knowledge based mapping and vision-language models to overcome these limitations. The architecture is comprised of three main stages: (1) feature extraction of spatial and semantic information with multimodal features through object detection and VLMs; (2) Confidence-Weighted Component Fusion for adaptive component-level validation; and (3) physics-guided reasoning using large language models for structural and relational constraints (e.g., alignment, position, consistency) enforcement.
Most neural network quantization methods apply uniform bit precision across spatial regions, ignoring the heterogeneous structural and textural complexity of visual data. This paper introduces MCAQ-YOLO, a morphological complexity-aware quantization framework for object detection. The framework employs five morphological metrics - fractal dimension, texture entropy, gradient variance, edge density, and contour complexity - to characterize local visual morphology and guide spatially adaptive bit allocation. By correlating these metrics with quantization sensitivity, MCAQ-YOLO dynamically adjusts bit precision according to spatial complexity. In addition, a curriculum-based quantization-aware training scheme progressively increases quantization difficulty to stabilize optimization and accelerate convergence. Experimental results demonstrate a strong correlation between morphological complexity and quantization sensitivity and show that MCAQ-YOLO achieves superior detection accuracy and convergence efficiency compared with uniform quantization. On a safety equipment dataset, MCAQ-YOLO attains 85.6 percent mAP@0.5 with an average of 4.2 bits and a 7.6x compression ratio, yielding 3.5 percentage points higher mAP than uniform 4-bit quantization while introducing only 1.8 ms of additional runtime overhead per image. Cross-dataset validation on COCO and Pascal VOC further confirms consistent performance gains, indicating that morphology-driven spatial quantization can enhance efficiency and robustness for computationally constrained, safety-critical visual recognition tasks.
Anomaly object detection and classification are one of the main challenging tasks in computer vision and pattern recognition. In this paper, we propose a new method to automatically detect, localize and classify defects in concrete bridge structures using drone imagery. This framework is constituted of two main stages. The first stage uses saliency for defect region proposals where defects often exhibit local discontinuities in the normal surface patterns with regard to their surrounding. The second stage employs a YOLOX-based deep learning detector that operates on saliency-enhanced images obtained by applying bounding-box level brightness augmentation to salient defect regions. Experimental results on standard datasets confirm the performance of our framework and its suitability in terms of accuracy and computational efficiency, which give a huge potential to be implemented in a self-powered inspection system.
Unmanned aerial vehicle (UAV) detection and aerial object recognition are critical for modern surveillance and security, prompting a need for robust systems that overcome limitations of single-modality approaches. This research addresses these challenges by designing and rigorously evaluating a novel multimodal Transformer model that integrates diverse data streams: radar, visual band video (RGB), infrared (IR) video, and audio. The architecture effectively fuses distinct features from each modality, leveraging the Transformer's self-attention mechanisms to learn comprehensive, complementary, and highly discriminative representations for classification. The model demonstrated exceptional performance on an independent test set, achieving macro-averaged metrics of 0.9812 accuracy, 0.9873 recall, 0.9787 precision, 0.9826 F1-score, and 0.9954 specificity. Notably, it exhibited particularly high precision and recall in distinguishing drones from other aerial objects. Furthermore, computational analysis confirmed its efficiency, with 1.09 GFLOPs, 1.22 million parameters, and an inference speed of 41.11 FPS, highlighting its suitability for real-time applications. This study presents a significant advancement in aerial object classification, validating the efficacy of multimodal data fusion via a Transformer architecture for achieving state-of-the-art performance, thereby offering a highly accurate and resilient solution for UAV detection and monitoring in complex airspace.
We introduce Orion, a visual agent framework that can take in any modality and generate any modality. Using an agentic framework with multiple tool-calling capabilities, Orion is designed for visual AI tasks and achieves state-of-the-art results. Unlike traditional vision-language models that produce descriptive outputs, Orion orchestrates a suite of specialized computer vision tools, including object detection, keypoint localization, panoptic segmentation, Optical Character Recognition, and geometric analysis, to execute complex multi-step visual workflows. The system achieves competitive performance on MMMU, MMBench, DocVQA, and MMLongBench while extending monolithic vision-language models to production-grade visual intelligence. By combining neural perception with symbolic execution, Orion enables autonomous visual reasoning, marking a transition from passive visual understanding to active, tool-driven visual intelligence.
Previous Quantization-Aware Training (QAT) methods for vision transformers rely on expensive retraining to recover accuracy loss in non-linear layer quantization, limiting their use in resource-constrained environments. In contrast, existing Post-Training Quantization (PTQ) methods either partially quantize non-linear functions or adjust activation distributions to maintain accuracy but fail to achieve fully integer-only inference. In this paper, we introduce IPTQ-ViT, a novel PTQ framework for fully integer-only vision transformers without retraining. We present approximation functions: a polynomial-based GELU optimized for vision data and a bit-shifting-based Softmax designed to improve approximation accuracy in PTQ. In addition, we propose a unified metric integrating quantization sensitivity, perturbation, and computational cost to select the optimal approximation function per activation layer. IPTQ-ViT outperforms previous PTQ methods, achieving up to 6.44\%p (avg. 1.78\%p) top-1 accuracy improvement for image classification, 1.0 mAP for object detection. IPTQ-ViT outperforms partial floating-point PTQ methods under W8A8 and W4A8, and achieves accuracy and latency comparable to integer-only QAT methods. We plan to release our code https://github.com/gihwan-kim/IPTQ-ViT.git.
Geospatial Foundation Models (GeoFMs) are transforming Earth Observation (EO), but evaluation lacks standardized protocols. GEO-Bench-2 addresses this with a comprehensive framework spanning classification, segmentation, regression, object detection, and instance segmentation across 19 permissively-licensed datasets. We introduce ''capability'' groups to rank models on datasets that share common characteristics (e.g., resolution, bands, temporality). This enables users to identify which models excel in each capability and determine which areas need improvement in future work. To support both fair comparison and methodological innovation, we define a prescriptive yet flexible evaluation protocol. This not only ensures consistency in benchmarking but also facilitates research into model adaptation strategies, a key and open challenge in advancing GeoFMs for downstream tasks. Our experiments show that no single model dominates across all tasks, confirming the specificity of the choices made during architecture design and pretraining. While models pretrained on natural images (ConvNext ImageNet, DINO V3) excel on high-resolution tasks, EO-specific models (TerraMind, Prithvi, and Clay) outperform them on multispectral applications such as agriculture and disaster response. These findings demonstrate that optimal model choice depends on task requirements, data modalities, and constraints. This shows that the goal of a single GeoFM model that performs well across all tasks remains open for future research. GEO-Bench-2 enables informed, reproducible GeoFM evaluation tailored to specific use cases. Code, data, and leaderboard for GEO-Bench-2 are publicly released under a permissive license.
In modern Intelligent Transportation Systems (ITS), cameras are a key component due to their ability to provide valuable information for multiple stakeholders. A central task is Multi-Camera Vehicle Tracking (MCVT), which generates vehicle trajectories and enables applications such as anomaly detection, traffic density estimation, and suspect vehicle tracking. However, most existing studies on MCVT emphasize accuracy while overlooking real-time performance and scalability. These two aspects are essential for real-world deployment and become increasingly challenging in city-scale applications as the number of cameras grows. To address this issue, we propose SAE-MCVT, the first scalable real-time MCVT framework. The system includes several edge devices that interact with one central workstation separately. On the edge side, live RTSP video streams are serialized and processed through modules including object detection, object tracking, geo-mapping, and feature extraction. Only lightweight metadata -- vehicle locations and deep appearance features -- are transmitted to the central workstation. On the central side, cross-camera association is calculated under the constraint of spatial-temporal relations between adjacent cameras, which are learned through a self-supervised camera link model. Experiments on the RoundaboutHD dataset show that SAE-MCVT maintains real-time operation on 2K 15 FPS video streams and achieves an IDF1 score of 61.2. To the best of our knowledge, this is the first scalable real-time MCVT framework suitable for city-scale deployment.
The pervasive integration of Artificial Intelligence models into contemporary mobile computing is notable across numerous use cases, from virtual assistants to advanced image processing. Optimizing the mobile user experience involves minimal latency and high responsiveness from deployed AI models with challenges from execution strategies that fully leverage real time constraints to the exploitation of heterogeneous hardware architecture. In this paper, we research and propose the optimal execution configurations for AI models on an Android system, focusing on two critical tasks: object detection (YOLO family) and image classification (ResNet). These configurations evaluate various model quantization schemes and the utilization of on device accelerators, specifically the GPU and NPU. Our core objective is to empirically determine the combination that achieves the best trade-off between minimal accuracy degradation and maximal inference speed-up.
Scaling up network depth is a fundamental pursuit in neural architecture design, as theory suggests that deeper models offer exponentially greater capability. Benefiting from the residual connections, modern neural networks can scale up to more than one hundred layers and enjoy wide success. However, as networks continue to deepen, current architectures often struggle to realize their theoretical capacity improvements, calling for more advanced designs to further unleash the potential of deeper networks. In this paper, we identify two key barriers that obstruct residual models from scaling deeper: shortcut degradation and limited width. Shortcut degradation hinders deep-layer learning, while the inherent depth-width trade-off imposes limited width. To mitigate these issues, we propose a generalized residual architecture dubbed Step by Step Network (StepsNet) to bridge the gap between theoretical potential and practical performance of deep models. Specifically, we separate features along the channel dimension and let the model learn progressively via stacking blocks with increasing width. The resulting method mitigates the two identified problems and serves as a versatile macro design applicable to various models. Extensive experiments show that our method consistently outperforms residual models across diverse tasks, including image classification, object detection, semantic segmentation, and language modeling. These results position StepsNet as a superior generalization of the widely adopted residual architecture.