What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
May 30, 2025
Abstract:This paper proposes a novel Mixture of Prompt-Experts based Speaker Adaptation approach (MOPSA) for elderly speech recognition. It allows zero-shot, real-time adaptation to unseen speakers, and leverages domain knowledge tailored to elderly speakers. Top-K most distinctive speaker prompt clusters derived using K-means serve as experts. A router network is trained to dynamically combine clustered prompt-experts. Acoustic and language level variability among elderly speakers are modelled using separate encoder and decoder prompts for Whisper. Experiments on the English DementiaBank Pitt and Cantonese JCCOCC MoCA elderly speech datasets suggest that online MOPSA adaptation outperforms the speaker-independent (SI) model by statistically significant word error rate (WER) or character error rate (CER) reductions of 0.86% and 1.47% absolute (4.21% and 5.40% relative). Real-time factor (RTF) speed-up ratios of up to 16.12 times are obtained over offline batch-mode adaptation.
* Accepted by Interspeech 2025
Via

Jun 06, 2025
Abstract:Recent advances in automatic speech recognition (ASR) have combined speech encoders with large language models (LLMs) through projection, forming Speech LLMs with strong performance. However, adapting them to new domains remains challenging, especially in low-resource settings where paired speech-text data is scarce. We propose a text-only fine-tuning strategy for Speech LLMs using unpaired target-domain text without requiring additional audio. To preserve speech-text alignment, we introduce a real-time evaluation mechanism during fine-tuning. This enables effective domain adaptation while maintaining source-domain performance. Experiments on LibriSpeech, SlideSpeech, and Medical datasets show that our method achieves competitive recognition performance, with minimal degradation compared to full audio-text fine-tuning. It also improves generalization to new domains without catastrophic forgetting, highlighting the potential of text-only fine-tuning for low-resource domain adaptation of ASR.
Via

Jun 06, 2025
Abstract:End-to-End Automatic Speech Recognition (ASR) has advanced significantly yet still struggles with rare and domain-specific entities. This paper introduces a simple yet efficient prompt-based biasing technique for contextualized ASR, enhancing recognition accuracy by leverage a unified multitask learning framework. The approach comprises two key components: a prompt biasing model which is trained to determine when to focus on entities in prompt, and a entity filtering mechanism which efficiently filters out irrelevant entities. Our method significantly enhances ASR accuracy on entities, achieving a relative 30.7% and 18.0% reduction in Entity Word Error Rate compared to the baseline model with shallow fusion on in-house domain dataset with small and large entity lists, respectively. The primary advantage of this method lies in its efficiency and simplicity without any structure change, making it lightweight and highly efficient.
Via

Jun 05, 2025
Abstract:We introduce LESS (Large Language Model Enhanced Semi-supervised Learning), a versatile framework that leverages Large Language Models (LLMs) to correct pseudo labels generated from in-the-wild data. Within the LESS framework, pseudo-labeled text from Automatic Speech Recognition (ASR) or Automatic Speech Translation (AST) of the unsupervised data is refined by an LLM, and augmented by a data filtering strategy to optimize LLM knowledge transfer efficiency. Experiments on both Mandarin ASR and Spanish-to-English AST tasks show that LESS achieves a notable absolute WER reduction of 3.77% on the Wenet Speech test set, as well as BLEU scores of 34.0 and 64.7 on Callhome and Fisher test sets respectively. These results validate the adaptability of LESS across different languages, tasks, and domains. Ablation studies conducted with various LLMs and prompt configurations provide novel insights into leveraging LLM-derived knowledge for speech processing applications.
Via

Jun 07, 2025
Abstract:Retentive Network (RetNet) represents a significant advancement in neural network architecture, offering an efficient alternative to the Transformer. While Transformers rely on self-attention to model dependencies, they suffer from high memory costs and limited scalability when handling long sequences due to their quadratic complexity. To mitigate these limitations, RetNet introduces a retention mechanism that unifies the inductive bias of recurrence with the global dependency modeling of attention. This mechanism enables linear-time inference, facilitates efficient modeling of extended contexts, and remains compatible with fully parallelizable training pipelines. RetNet has garnered significant research interest due to its consistently demonstrated cross-domain effectiveness, achieving robust performance across machine learning paradigms including natural language processing, speech recognition, and time-series analysis. However, a comprehensive review of RetNet is still missing from the current literature. This paper aims to fill that gap by offering the first detailed survey of the RetNet architecture, its key innovations, and its diverse applications. We also explore the main challenges associated with RetNet and propose future research directions to support its continued advancement in both academic research and practical deployment.
* 15 pages, 3 figures
Via

May 28, 2025
Abstract:This paper proposes a novel MoE-based speaker adaptation framework for foundation models based dysarthric speech recognition. This approach enables zero-shot adaptation and real-time processing while incorporating domain knowledge. Speech impairment severity and gender conditioned adapter experts are dynamically combined using on-the-fly predicted speaker-dependent routing parameters. KL-divergence is used to further enforce diversity among experts and their generalization to unseen speakers. Experimental results on the UASpeech corpus suggest that on-the-fly MoE-based adaptation produces statistically significant WER reductions of up to 1.34% absolute (6.36% relative) over the unadapted baseline HuBERT/WavLM models. Consistent WER reductions of up to 2.55% absolute (11.44% relative) and RTF speedups of up to 7 times are obtained over batch-mode adaptation across varying speaker-level data quantities. The lowest published WER of 16.35% (46.77% on very low intelligibility) is obtained.
* Accepted by Interspeech 2025
Via

Jun 06, 2025
Abstract:End-to-end (E2E) Automatic Speech Recognition (ASR) models are trained using paired audio-text samples that are expensive to obtain, since high-quality ground-truth data requires human annotators. Voice search applications, such as digital media players, leverage ASR to allow users to search by voice as opposed to an on-screen keyboard. However, recent or infrequent movie titles may not be sufficiently represented in the E2E ASR system's training data, and hence, may suffer poor recognition. In this paper, we propose a phonetic correction system that consists of (a) a phonetic search based on the ASR model's output that generates phonetic alternatives that may not be considered by the E2E system, and (b) a rescorer component that combines the ASR model recognition and the phonetic alternatives, and select a final system output. We find that our approach improves word error rate between 4.4 and 7.6% relative on benchmarks of popular movie titles over a series of competitive baselines.
* To appear at Interspeech '25
Via

Jul 09, 2025
Abstract:Helping deaf and hard-of-hearing people communicate more easily is the main goal of Automatic Sign Language Translation. Although most past research has focused on turning sign language into text, doing the reverse, turning spoken English into sign language animations, has been largely overlooked. That's because it involves multiple steps, such as understanding speech, translating it into sign-friendly grammar, and generating natural human motion. In this work, we introduce a complete pipeline that converts English speech into smooth, realistic 3D sign language animations. Our system starts with Whisper to translate spoken English into text. Then, we use a MarianMT machine translation model to translate that text into American Sign Language (ASL) gloss, a simplified version of sign language that captures meaning without grammar. This model performs well, reaching BLEU scores of 0.7714 and 0.8923. To make the gloss translation more accurate, we also use word embeddings such as Word2Vec and FastText to understand word meanings. Finally, we animate the translated gloss using a 3D keypoint-based motion system trained on Sign3D-WLASL, a dataset we created by extracting body, hand, and face key points from real ASL videos in the WLASL dataset. To support the gloss translation stage, we also built a new dataset called BookGlossCorpus-CG, which turns everyday English sentences from the BookCorpus dataset into ASL gloss using grammar rules. Our system stitches everything together by smoothly interpolating between signs to create natural, continuous animations. Unlike previous works like How2Sign and Phoenix-2014T that focus on recognition or use only one type of data, our pipeline brings together audio, text, and motion in a single framework that goes all the way from spoken English to lifelike 3D sign language animation.
* 11 pages, 12 figures
Via

May 28, 2025
Abstract:Recent work suggests that large language models (LLMs) can improve performance of speech tasks compared to existing systems. To support their claims, results on LibriSpeech and Common Voice are often quoted. However, this work finds that a substantial amount of the LibriSpeech and Common Voice evaluation sets appear in public LLM pretraining corpora. This calls into question the reliability of findings drawn from these two datasets. To measure the impact of contamination, LLMs trained with or without contamination are compared, showing that a contaminated LLM is more likely to generate test sentences it has seen during training. Speech recognisers using contaminated LLMs shows only subtle differences in error rates, but assigns significantly higher probabilities to transcriptions seen during training. Results show that LLM outputs can be biased by tiny amounts of data contamination, highlighting the importance of evaluating LLM-based speech systems with held-out data.
Via

Jun 04, 2025
Abstract:To build an automatic speech recognition (ASR) system that can serve everyone in the world, the ASR needs to be robust to a wide range of accents including unseen accents. We systematically study how three different variables in training data -- the number of speakers, the audio duration per each individual speaker, and the diversity of accents -- affect ASR robustness towards unseen accents in a low-resource training regime. We observe that for a fixed number of ASR training hours, it is more beneficial to increase the number of speakers (which means each speaker contributes less) than the number of hours contributed per speaker. We also observe that more speakers enables ASR performance gains from scaling number of hours. Surprisingly, we observe minimal benefits to prioritizing speakers with different accents when the number of speakers is controlled. Our work suggests that practitioners should prioritize increasing the speaker count in ASR training data composition for new languages.
* Accepted to INTERSPEECH 2025
Via
