Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Spread through air spaces (STAS) represents a newly identified aggressive pattern in lung cancer, which is known to be associated with adverse prognostic factors and complex pathological features. Pathologists currently rely on time consuming manual assessments, which are highly subjective and prone to variation. This highlights the urgent need for automated and precise diag nostic solutions. 2,970 lung cancer tissue slides are comprised from multiple centers, re-diagnosed them, and constructed and publicly released three lung cancer STAS datasets: STAS CSU (hospital), STAS TCGA, and STAS CPTAC. All STAS datasets provide corresponding pathological feature diagnoses and related clinical data. To address the bias, sparse and heterogeneous nature of STAS, we propose an scale-aware multiple instance learning(SMILE) method for STAS diagnosis of lung cancer. By introducing a scale-adaptive attention mechanism, the SMILE can adaptively adjust high attention instances, reducing over-reliance on local regions and promoting consistent detection of STAS lesions. Extensive experiments show that SMILE achieved competitive diagnostic results on STAS CSU, diagnosing 251 and 319 STAS samples in CPTAC andTCGA,respectively, surpassing clinical average AUC. The 11 open baseline results are the first to be established for STAS research, laying the foundation for the future expansion, interpretability, and clinical integration of computational pathology technologies. The datasets and code are available at https://anonymous.4open.science/r/IJCAI25-1DA1.




Breast cancer detection based on pre-trained convolution neural network (CNN) has gained much interest among other conventional computer-based systems. In the past few years, CNN technology has been the most promising way to find cancer in mammogram scans. In this paper, the effect of layer freezing in a pre-trained CNN is investigated for breast cancer detection by classifying mammogram images as benign or malignant. Different VGG19 scenarios have been examined based on the number of convolution layer blocks that have been frozen. There are a total of six scenarios in this study. The primary benefits of this research are twofold: it improves the model's ability to detect breast cancer cases and it reduces the training time of VGG19 by freezing certain layers.To evaluate the performance of these scenarios, 1693 microbiological images of benign and malignant breast cancers were utilized. According to the reported results, the best recognition rate was obtained from a frozen first block of VGG19 with a sensitivity of 95.64 %, while the training of the entire VGG19 yielded 94.48%.




Mammographic screening is an effective method for detecting breast cancer, facilitating early diagnosis. However, the current need to manually inspect images places a heavy burden on healthcare systems, spurring a desire for automated diagnostic protocols. Techniques based on deep neural networks have been shown effective in some studies, but their tendency to overfit leaves considerable risk for poor generalisation and misdiagnosis, preventing their widespread adoption in clinical settings. Data augmentation schemes based on unpaired neural style transfer models have been proposed that improve generalisability by diversifying the representations of training image features in the absence of paired training data (images of the same tissue in either image style). But these models are similarly prone to various pathologies, and evaluating their performance is challenging without ground truths/large datasets (as is often the case in medical imaging). Here, we consider two frameworks/architectures: a GAN-based cycleGAN, and the more recently developed diffusion-based SynDiff. We evaluate their performance when trained on image patches parsed from three open access mammography datasets and one non-medical image dataset. We consider the use of uncertainty quantification to assess model trustworthiness, and propose a scheme to evaluate calibration quality in unpaired training scenarios. This ultimately helps facilitate the trustworthy use of image-to-image translation models in domains where ground truths are not typically available.
Self-supervised learning has revolutionized medical imaging by enabling efficient and generalizable feature extraction from large-scale unlabeled datasets. Recently, self-supervised foundation models have been extended to three-dimensional (3D) computed tomography (CT) data, generating compact, information-rich embeddings with 1408 features that achieve state-of-the-art performance on downstream tasks such as intracranial hemorrhage detection and lung cancer risk forecasting. However, these embeddings have been shown to encode demographic information, such as age, sex, and race, which poses a significant risk to the fairness of clinical applications. In this work, we propose a Variation Autoencoder (VAE) based adversarial debiasing framework to transform these embeddings into a new latent space where demographic information is no longer encoded, while maintaining the performance of critical downstream tasks. We validated our approach on the NLST lung cancer screening dataset, demonstrating that the debiased embeddings effectively eliminate multiple encoded demographic information and improve fairness without compromising predictive accuracy for lung cancer risk at 1-year and 2-year intervals. Additionally, our approach ensures the embeddings are robust against adversarial bias attacks. These results highlight the potential of adversarial debiasing techniques to ensure fairness and equity in clinical applications of self-supervised 3D CT embeddings, paving the way for their broader adoption in unbiased medical decision-making.




Cancer remains one of the leading causes of mortality worldwide, and among its many forms, brain tumors are particularly notorious due to their aggressive nature and the critical challenges involved in early diagnosis. Recent advances in artificial intelligence have shown great promise in assisting medical professionals with precise tumor segmentation, a key step in timely diagnosis and treatment planning. However, many state-of-the-art segmentation methods require extensive computational resources and prolonged training times, limiting their practical application in resource-constrained settings. In this work, we present a novel dual-decoder U-Net architecture enhanced with attention-gated skip connections, designed specifically for brain tumor segmentation from MRI scans. Our approach balances efficiency and accuracy by achieving competitive segmentation performance while significantly reducing training demands. Evaluated on the BraTS 2020 dataset, the proposed model achieved Dice scores of 85.06% for Whole Tumor (WT), 80.61% for Tumor Core (TC), and 71.26% for Enhancing Tumor (ET) in only 50 epochs, surpassing several commonly used U-Net variants. Our model demonstrates that high-quality brain tumor segmentation is attainable even under limited computational resources, thereby offering a viable solution for researchers and clinicians operating with modest hardware. This resource-efficient model has the potential to improve early detection and diagnosis of brain tumors, ultimately contributing to better patient outcomes
In the medical field, accurate diagnosis of lung cancer is crucial for treatment. Traditional manual analysis methods have significant limitations in terms of accuracy and efficiency. To address this issue, this paper proposes a deep learning network framework based on the pre-trained MobileNetV2 model, initialized with weights from the ImageNet-1K dataset (version 2). The last layer of the model (the fully connected layer) is replaced with a new fully connected layer, and a softmax activation function is added to efficiently classify three types of lung cancer CT scan images. Experimental results show that the model achieves an accuracy of 99.6% on the test set, with significant improvements in feature extraction compared to traditional models.With the rapid development of artificial intelligence technologies, deep learning applications in medical image processing are bringing revolutionary changes to the healthcare industry. AI-based lung cancer detection systems can significantly improve diagnostic efficiency, reduce the workload of doctors, and occupy an important position in the global healthcare market. The potential of AI to improve diagnostic accuracy, reduce medical costs, and promote precision medicine will have a profound impact on the future development of the healthcare industry.
We propose a homogeneity test closely related to the concept of linear separability between two samples. Using the test one can answer the question whether a linear classifier is merely ``random'' or effectively captures differences between two classes. We focus on establishing upper bounds for the test's \emph{p}-value when applied to two-dimensional samples. Specifically, for normally distributed samples we experimentally demonstrate that the upper bound is highly accurate. Using this bound, we evaluate classifiers designed to detect ER-positive breast cancer recurrence based on gene pair expression. Our findings confirm significance of IGFBP6 and ELOVL5 genes in this process.




Lung cancer is an extremely lethal disease primarily due to its late-stage diagnosis and significant mortality rate, making it the major cause of cancer-related demises globally. Machine Learning (ML) and Convolution Neural network (CNN) based Deep Learning (DL) techniques are primarily used for precise segmentation and classification of cancerous nodules in the CT (Computed Tomography) or MRI images. This study introduces an innovative approach to lung nodule segmentation by utilizing the Segment Anything Model (SAM) combined with transfer learning techniques. Precise segmentation of lung nodules is crucial for the early detection of lung cancer. The proposed method leverages Bounding Box prompts and a vision transformer model to enhance segmentation performance, achieving high accuracy, Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) metrics. The integration of SAM and Transfer Learning significantly improves Computer-Aided Detection (CAD) systems in medical imaging, particularly for lung cancer diagnosis. The findings demonstrate the proposed model effectiveness in precisely segmenting lung nodules from CT scans, underscoring its potential to advance early detection and improve patient care outcomes in lung cancer diagnosis. The results show SAM Model with transfer learning achieving a DSC of 97.08% and an IoU of 95.6%, for segmentation and accuracy of 96.71% for classification indicates that ,its performance is noteworthy compared to existing techniques.




Cancer remains a significant health challenge worldwide, with a new diagnosis occurring every two minutes in the UK. Surgery is one of the main treatment options for cancer. However, surgeons rely on the sense of touch and naked eye with limited use of pre-operative image data to directly guide the excision of cancerous tissues and metastases due to the lack of reliable intraoperative visualisation tools. This leads to increased costs and harm to the patient where the cancer is removed with positive margins, or where other critical structures are unintentionally impacted. There is therefore a pressing need for more reliable and accurate intraoperative visualisation tools for minimally invasive surgery to improve surgical outcomes and enhance patient care. A recent miniaturised cancer detection probe (i.e., SENSEI developed by Lightpoint Medical Ltd.) leverages the cancer-targeting ability of nuclear agents to more accurately identify cancer intra-operatively using the emitted gamma signal. However, the use of this probe presents a visualisation challenge as the probe is non-imaging and is air-gapped from the tissue, making it challenging for the surgeon to locate the probe-sensing area on the tissue surface. Geometrically, the sensing area is defined as the intersection point between the gamma probe axis and the tissue surface in 3D space but projected onto the 2D laparoscopic image. Hence, in this thesis, tool tracking, pose estimation, and segmentation tools were developed first, followed by laparoscope image depth estimation algorithms and 3D reconstruction methods.
Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related mortality worldwide, with early detection being crucial for improving patient survival rates. However, early screening for HCC using ultrasound suffers from insufficient sensitivity and is highly dependent on the expertise of radiologists for interpretation. Leveraging the latest advancements in artificial intelligence (AI) in medical imaging, this study proposes an innovative Hierarchical Sparse Query Transformer (HSQformer) model that combines the strengths of Convolutional Neural Networks (CNNs) and Vision Transformers (ViTs) to enhance the accuracy of HCC diagnosis in ultrasound screening. The HSQformer leverages sparse latent space representations to capture hierarchical details at various granularities without the need for complex adjustments, and adopts a modular, plug-and-play design philosophy, ensuring the model's versatility and ease of use. The HSQformer's performance was rigorously tested across three distinct clinical scenarios: single-center, multi-center, and high-risk patient testing. In each of these settings, it consistently outperformed existing state-of-the-art models, such as ConvNext and SwinTransformer. Notably, the HSQformer even matched the diagnostic capabilities of senior radiologists and comprehensively surpassed those of junior radiologists. The experimental results from this study strongly demonstrate the effectiveness and clinical potential of AI-assisted tools in HCC screening. The full code is available at https://github.com/Asunatan/HSQformer.