What is cancer detection? Cancer detection using Artificial Intelligence (AI) involves leveraging advanced machine learning algorithms and techniques to identify and diagnose cancer from various medical data sources. The goal is to enhance early detection, improve diagnostic accuracy, and potentially reduce the need for invasive procedures.
Papers and Code
Feb 02, 2025
Abstract:Prostate cancer is a major cause of cancer-related deaths in men, where early detection greatly improves survival rates. Although MRI-TRUS fusion biopsy offers superior accuracy by combining MRI's detailed visualization with TRUS's real-time guidance, it is a complex and time-intensive procedure that relies heavily on manual annotations, leading to potential errors. To address these challenges, we propose a fully automatic MRI-TRUS fusion-based segmentation method that identifies prostate tumors directly in TRUS images without requiring manual annotations. Unlike traditional multimodal fusion approaches that rely on naive data concatenation, our method integrates a registration-segmentation framework to align and leverage spatial information between MRI and TRUS modalities. This alignment enhances segmentation accuracy and reduces reliance on manual effort. Our approach was validated on a dataset of 1,747 patients from Stanford Hospital, achieving an average Dice coefficient of 0.212, outperforming TRUS-only (0.117) and naive MRI-TRUS fusion (0.132) methods, with significant improvements (p $<$ 0.01). This framework demonstrates the potential for reducing the complexity of prostate cancer diagnosis and provides a flexible architecture applicable to other multimodal medical imaging tasks.
Via

Jan 03, 2025
Abstract:Cancer remains a significant health challenge worldwide, with a new diagnosis occurring every two minutes in the UK. Surgery is one of the main treatment options for cancer. However, surgeons rely on the sense of touch and naked eye with limited use of pre-operative image data to directly guide the excision of cancerous tissues and metastases due to the lack of reliable intraoperative visualisation tools. This leads to increased costs and harm to the patient where the cancer is removed with positive margins, or where other critical structures are unintentionally impacted. There is therefore a pressing need for more reliable and accurate intraoperative visualisation tools for minimally invasive surgery to improve surgical outcomes and enhance patient care. A recent miniaturised cancer detection probe (i.e., SENSEI developed by Lightpoint Medical Ltd.) leverages the cancer-targeting ability of nuclear agents to more accurately identify cancer intra-operatively using the emitted gamma signal. However, the use of this probe presents a visualisation challenge as the probe is non-imaging and is air-gapped from the tissue, making it challenging for the surgeon to locate the probe-sensing area on the tissue surface. Geometrically, the sensing area is defined as the intersection point between the gamma probe axis and the tissue surface in 3D space but projected onto the 2D laparoscopic image. Hence, in this thesis, tool tracking, pose estimation, and segmentation tools were developed first, followed by laparoscope image depth estimation algorithms and 3D reconstruction methods.
* Doctoral thesis
Via

Dec 14, 2024
Abstract:Prostate cancer is a leading cause of cancer-related deaths among men. The recent development of high frequency, micro-ultrasound imaging offers improved resolution compared to conventional ultrasound and potentially a better ability to differentiate clinically significant cancer from normal tissue. However, the features of prostate cancer remain subtle, with ambiguous borders with normal tissue and large variations in appearance, making it challenging for both machine learning and humans to localize it on micro-ultrasound images. We propose a novel Mask Enhanced Deeply-supervised Micro-US network, termed MedMusNet, to automatically and more accurately segment prostate cancer to be used as potential targets for biopsy procedures. MedMusNet leverages predicted masks of prostate cancer to enforce the learned features layer-wisely within the network, reducing the influence of noise and improving overall consistency across frames. MedMusNet successfully detected 76% of clinically significant cancer with a Dice Similarity Coefficient of 0.365, significantly outperforming the baseline Swin-M2F in specificity and accuracy (Wilcoxon test, Bonferroni correction, p-value<0.05). While the lesion-level and patient-level analyses showed improved performance compared to human experts and different baseline, the improvements did not reach statistical significance, likely on account of the small cohort. We have presented a novel approach to automatically detect and segment clinically significant prostate cancer on B-mode micro-ultrasound images. Our MedMusNet model outperformed other models, surpassing even human experts. These preliminary results suggest the potential for aiding urologists in prostate cancer diagnosis via biopsy and treatment decision-making.
Via

Feb 11, 2025
Abstract:Cancer evolves continuously over time through a complex interplay of genetic, epigenetic, microenvironmental, and phenotypic changes. This dynamic behavior drives uncontrolled cell growth, metastasis, immune evasion, and therapy resistance, posing challenges for effective monitoring and treatment. However, today's data-driven research in oncology has primarily focused on cross-sectional analysis using data from a single modality, limiting the ability to fully characterize and interpret the disease's dynamic heterogeneity. Advances in multiscale data collection and computational methods now enable the discovery of longitudinal multimodal biomarkers for precision oncology. Longitudinal data reveal patterns of disease progression and treatment response that are not evident from single-timepoint data, enabling timely abnormality detection and dynamic treatment adaptation. Multimodal data integration offers complementary information from diverse sources for more precise risk assessment and targeting of cancer therapy. In this review, we survey methods of longitudinal and multimodal modeling, highlighting their synergy in providing multifaceted insights for personalized care tailored to the unique characteristics of a patient's cancer. We summarize the current challenges and future directions of longitudinal multimodal analysis in advancing precision oncology.
* This work has been submitted to the IEEE RBME for potential
publication
Via

Feb 06, 2025
Abstract:Identifying the extent of brain tumors is a significant challenge in brain cancer treatment. The main difficulty is in the approximate detection of tumor size. Magnetic resonance imaging (MRI) has become a critical diagnostic tool. However, manually detecting the boundaries of brain tumors from MRI scans is a labor-intensive task that requires extensive expertise. Deep learning and computer-aided detection techniques have led to notable advances in machine learning for this purpose. In this paper, we propose a modified You Only Look Once (YOLOv8) model to accurately detect the tumors within the MRI images. The proposed model replaced the Non-Maximum Suppression (NMS) algorithm with a Real-Time Detection Transformer (RT- DETR) in the detection head. NMS filters out redundant or overlapping bounding boxes in the detected tumors, but they are hand-designed and pre-set. RT-DETR removes hand-designed components. The second improvement was made by replacing the normal convolution block with ghost convolution. Ghost Convolution reduces computational and memory costs while maintaining high accuracy and enabling faster inference, making it ideal for resource-constrained environments and real-time applications. The third improvement was made by introducing a vision transformer block in the backbone of YOLOv8 to extract context-aware features. We used a publicly available dataset of brain tumors in the proposed model. The proposed model performed better than the original YOLOv8 model and also performed better than other object detectors (Faster R- CNN, Mask R-CNN, YOLO, YOLOv3, YOLOv4, YOLOv5, SSD, RetinaNet, EfficientDet, and DETR). The proposed model achieved 0.91 mAP (mean Average Precision)@0.5.
* International Conference on System Engineering and Technology
(ICSET) 2024
Via

Dec 20, 2024
Abstract:Cases of laryngeal cancer are predicted to rise significantly in the coming years. Current diagnostic pathways cause many patients to be incorrectly referred to urgent suspected cancer pathways, putting undue stress on both patients and the medical system. Artificial intelligence offers a promising solution by enabling non-invasive detection of laryngeal cancer from patient speech, which could help prioritise referrals more effectively and reduce inappropriate referrals of non-cancer patients. To realise this potential, open science is crucial. A major barrier in this field is the lack of open-source datasets and reproducible benchmarks, forcing researchers to start from scratch. Our work addresses this challenge by introducing a benchmark suite comprising 36 models trained and evaluated on open-source datasets. These models are accessible in a public repository, providing a foundation for future research. They evaluate three different algorithms and three audio feature sets, offering a comprehensive benchmarking framework. We propose standardised metrics and evaluation methodologies to ensure consistent and comparable results across future studies. The presented models include both audio-only inputs and multimodal inputs that incorporate demographic and symptom data, enabling their application to datasets with diverse patient information. By providing these benchmarks, future researchers can evaluate their datasets, refine the models, and use them as a foundation for more advanced approaches. This work aims to provide a baseline for establishing reproducible benchmarks, enabling researchers to compare new methods against these standards and ultimately advancing the development of AI tools for detecting laryngeal cancer.
* 24 pages, 6 figures, 7 tables
Via

Dec 23, 2024
Abstract:This research presents an innovative approach to cancer diagnosis and prediction using explainable Artificial Intelligence (XAI) and deep learning techniques. With cancer causing nearly 10 million deaths globally in 2020, early and accurate diagnosis is crucial. Traditional methods often face challenges in cost, accuracy, and efficiency. Our study develops an AI model that provides precise outcomes and clear insights into its decision-making process, addressing the "black box" problem of deep learning models. By employing XAI techniques, we enhance interpretability and transparency, building trust among healthcare professionals and patients. Our approach leverages neural networks to analyse extensive datasets, identifying patterns for cancer detection. This model has the potential to revolutionise diagnosis by improving accuracy, accessibility, and clarity in medical decision-making, possibly leading to earlier detection and more personalised treatment strategies. Furthermore, it could democratise access to high-quality diagnostics, particularly in resource-limited settings, contributing to global health equity. The model's applications extend beyond cancer diagnosis, potentially transforming various aspects of medical decision-making and saving millions of lives worldwide.
Via

Jan 01, 2025
Abstract:Oral cancer constitutes a significant global health concern, resulting in 277,484 fatalities in 2023, with the highest prevalence observed in low- and middle-income nations. Facilitating automation in the detection of possibly malignant and malignant lesions in the oral cavity could result in cost-effective and early disease diagnosis. Establishing an extensive repository of meticulously annotated oral lesions is essential. In this research photos are being collected from global clinical experts, who have been equipped with an annotation tool to generate comprehensive labelling. This research presents a novel approach for integrating bounding box annotations from various doctors. Additionally, Deep Belief Network combined with CAPSNET is employed to develop automated systems that extracted intricate patterns to address this challenging problem. This study evaluated two deep learning-based computer vision methodologies for the automated detection and classification of oral lesions to facilitate the early detection of oral cancer: image classification utilizing CAPSNET. Image classification attained an F1 score of 94.23% for detecting photos with lesions 93.46% for identifying images necessitating referral. Object detection attained an F1 score of 89.34% for identifying lesions for referral. Subsequent performances are documented about classification based on the sort of referral decision. Our preliminary findings indicate that deep learning possesses the capability to address this complex problem.
* Accepted to IEEE International Conference on Advancement in
Communication and Computing Technology (INOACC), will be held in Sai Vidya
Institute of Technology, Bengaluru, Karnataka, India. (Preprint)
Via

Dec 28, 2024
Abstract:Quantitative tools are increasingly appealing for decision support in healthcare, driven by the growing capabilities of advanced AI systems. However, understanding the predictive uncertainties surrounding a tool's output is crucial for decision-makers to ensure reliable and transparent decisions. In this paper, we present a case study on pulmonary nodule detection for lung cancer screening, enhancing an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC). We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain, allowing end-users to achieve arbitrary validity by trading off false positives and providing formal statistical guarantees on model performance. Among ground-truth nodules annotated by at least three radiologists, our model achieves a sensitivity that is competitive with that generally achieved by individual radiologists, with a slight increase in false positives. Furthermore, we illustrate the risks of using off-the-shelve prediction models when faced with ontological uncertainty, such as when radiologists disagree on what constitutes the ground truth on pulmonary nodules.
Via

Jan 15, 2025
Abstract:Colorectal cancer (CRC) is one of the most commonly diagnosed cancers all over the world. It starts as a polyp in the inner lining of the colon. To prevent CRC, early polyp detection is required. Colonosopy is used for the inspection of the colon. Generally, the images taken by the camera placed at the tip of the endoscope are analyzed by the experts manually. Various traditional machine learning models have been used with the rise of machine learning. Recently, deep learning models have shown more effectiveness in polyp detection due to their superiority in generalizing and learning small features. These deep learning models for object detection can be segregated into two different types: single-stage and two-stage. Generally, two stage models have higher accuracy than single stage ones but the single stage models have low inference time. Hence, single stage models are easy to use for quick object detection. YOLO is one of the singlestage models used successfully for polyp detection. It has drawn the attention of researchers because of its lower inference time. The researchers have used Different versions of YOLO so far, and with each newer version, the accuracy of the model is increasing. This paper aims to see the effectiveness of the recently released YOLOv11 to detect polyp. We analyzed the performance for all five models of YOLOv11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x) with Kvasir dataset for the training and testing. Two different versions of the dataset were used. The first consisted of the original dataset, and the other was created using augmentation techniques. The performance of all the models with these two versions of the dataset have been analysed.
Via
