Abstract:Accurate prediction of protein-ligand binding affinity plays a pivotal role in accelerating the discovery of novel drugs and vaccines, particularly for gastrointestinal (GI) diseases such as gastric ulcers, Crohn's disease, and ulcerative colitis. Traditional computational models often rely on structural information alone and thus fail to capture the genetic determinants that influence disease mechanisms and therapeutic responses. To address this gap, we propose GastroDL-Fusion, a dual-modal deep learning framework that integrates protein-ligand complex data with disease-associated gene sequence information for drug and vaccine development. In our approach, protein-ligand complexes are represented as molecular graphs and modeled using a Graph Isomorphism Network (GIN), while gene sequences are encoded into biologically meaningful embeddings via a pre-trained Transformer (ProtBERT/ESM). These complementary modalities are fused through a multi-layer perceptron to enable robust cross-modal interaction learning. We evaluate the model on benchmark datasets of GI disease-related targets, demonstrating that GastroDL-Fusion significantly improves predictive performance over conventional methods. Specifically, the model achieves a mean absolute error (MAE) of 1.12 and a root mean square error (RMSE) of 1.75, outperforming CNN, BiLSTM, GIN, and Transformer-only baselines. These results confirm that incorporating both structural and genetic features yields more accurate predictions of binding affinities, providing a reliable computational tool for accelerating the design of targeted therapies and vaccines in the context of gastrointestinal diseases.
Abstract:Depression is a widespread mental health disorder, and clinical interviews are the gold standard for assessment. However, their reliance on scarce professionals highlights the need for automated detection. Current systems mainly employ black-box neural networks, which lack interpretability, which is crucial in mental health contexts. Some attempts to improve interpretability use post-hoc LLM generation but suffer from hallucination. To address these limitations, we propose RED, a Retrieval-augmented generation framework for Explainable depression Detection. RED retrieves evidence from clinical interview transcripts, providing explanations for predictions. Traditional query-based retrieval systems use a one-size-fits-all approach, which may not be optimal for depression detection, as user backgrounds and situations vary. We introduce a personalized query generation module that combines standard queries with user-specific background inferred by LLMs, tailoring retrieval to individual contexts. Additionally, to enhance LLM performance in social intelligence, we augment LLMs by retrieving relevant knowledge from a social intelligence datastore using an event-centric retriever. Experimental results on the real-world benchmark demonstrate RED's effectiveness compared to neural networks and LLM-based baselines.
Abstract:In the medical field, accurate diagnosis of lung cancer is crucial for treatment. Traditional manual analysis methods have significant limitations in terms of accuracy and efficiency. To address this issue, this paper proposes a deep learning network framework based on the pre-trained MobileNetV2 model, initialized with weights from the ImageNet-1K dataset (version 2). The last layer of the model (the fully connected layer) is replaced with a new fully connected layer, and a softmax activation function is added to efficiently classify three types of lung cancer CT scan images. Experimental results show that the model achieves an accuracy of 99.6% on the test set, with significant improvements in feature extraction compared to traditional models.With the rapid development of artificial intelligence technologies, deep learning applications in medical image processing are bringing revolutionary changes to the healthcare industry. AI-based lung cancer detection systems can significantly improve diagnostic efficiency, reduce the workload of doctors, and occupy an important position in the global healthcare market. The potential of AI to improve diagnostic accuracy, reduce medical costs, and promote precision medicine will have a profound impact on the future development of the healthcare industry.