Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
As the population ages rapidly, long-term care (LTC) facilities across North America face growing pressure to monitor residents safely while keeping staff workload manageable. Falls are among the most critical events to monitor due to their timely response requirement, yet frequent false alarms or uncertain detections can overwhelm caregivers and contribute to alarm fatigue. This motivates the design of reliable, whole end-to-end ambient monitoring systems from occupancy and activity awareness to fall and post-fall detection. In this paper, we focus on robust post-fall floor-occupancy detection using an off-the-shelf 60 GHz FMCW radar and evaluate its deployment in a realistic, furnished indoor environment representative of LTC facilities. Post-fall detection is challenging since motion is minimal, and reflections from the floor and surrounding objects can dominate the radar signal return. We compare a vendor-provided digital beamforming (DBF) pipeline against a proposed preprocessing approach based on Capon or minimum variance distortionless response (MVDR) beamforming. A cell-averaging constant false alarm rate (CA-CFAR) detector is applied and evaluated on the resulting range-azimuth maps across 7 participants. The proposed method improves the mean frame-positive rate from 0.823 (DBF) to 0.916 (Proposed).
Unsupervised text segmentation is crucial because boundary labels are expensive, subjective, and often fail to transfer across domains and granularity choices. We propose Embed-KCPD, a training-free method that represents sentences as embedding vectors and estimates boundaries by minimizing a penalized KCPD objective. Beyond the algorithmic instantiation, we develop, to our knowledge, the first dependence-aware theory for KCPD under $m$-dependent sequences, a finite-memory abstraction of short-range dependence common in language. We prove an oracle inequality for the population penalized risk and a localization guarantee showing that each true change point is recovered within a window that is small relative to segment length. To connect theory to practice, we introduce an LLM-based simulation framework that generates synthetic documents with controlled finite-memory dependence and known boundaries, validating the predicted scaling behavior. Across standard segmentation benchmarks, Embed-KCPD often outperforms strong unsupervised baselines. A case study on Taylor Swift's tweets illustrates that Embed-KCPD combines strong theoretical guarantees, simulated reliability, and practical effectiveness for text segmentation.
Conventional anomaly detection in multivariate time series relies on the assumption that the set of observed variables remains static. In operational environments, however, monitoring systems frequently experience sensor churn. Signals may appear, disappear, or be renamed, creating data windows where the cardinality varies and may include values unseen during training. To address this challenge, we propose SMKC, a framework that decouples the dynamic input structure from the anomaly detector. We first employ permutation-invariant feature hashing to sketch raw inputs into a fixed size state sequence. We then construct a hybrid kernel image to capture global temporal structure through pairwise comparisons of the sequence and its derivatives. The model learns normal patterns using masked reconstruction and a teacher-student prediction objective. Our evaluation reveals that robust log-distance channels provide the primary discriminative signal, whereas cosine representations often fail to capture sufficient contrast. Notably, we find that a detector using random projections and nearest neighbors on the SMKC representation performs competitively with fully trained baselines without requiring gradient updates. This highlights the effectiveness of the representation itself and offers a practical cold-start solution for resource-constrained deployments.
Reliable drone detection is challenging due to limited annotated real-world data, large appearance variability, and the presence of visually similar distractors such as birds. To address these challenges, this paper introduces SimD3, a large-scale high-fidelity synthetic dataset designed for robust drone detection in complex aerial environments. Unlike existing synthetic drone datasets, SimD3 explicitly models drones with heterogeneous payloads, incorporates multiple bird species as realistic distractors, and leverages diverse Unreal Engine 5 environments with controlled weather, lighting, and flight trajectories captured using a 360 six-camera rig. Using SimD3, we conduct an extensive experimental evaluation within the YOLOv5 detection framework, including an attention-enhanced variant termed Yolov5m+C3b, where standard bottleneck-based C3 blocks are replaced with C3b modules. Models are evaluated on synthetic data, combined synthetic and real data, and multiple unseen real-world benchmarks to assess robustness and generalization. Experimental results show that SimD3 provides effective supervision for small-object drone detection and that Yolov5m+C3b consistently outperforms the baseline across in-domain and cross-dataset evaluations. These findings highlight the utility of SimD3 for training and benchmarking robust drone detection models under diverse and challenging conditions.
The rapid proliferation of airborne platforms, including commercial aircraft, drones, and UAVs, has intensified the need for real-time, automated threat assessment systems. Current approaches depend heavily on manual monitoring, resulting in limited scalability and operational inefficiencies. This work introduces a dual-task model based on EfficientNetB4 capable of performing airborne object classification and threat-level prediction simultaneously. To address the scarcity of clean, balanced training data, we constructed the AODTA Dataset by aggregating and refining multiple public sources. We benchmarked our approach on both the AVD Dataset and the newly developed AODTA Dataset and further compared performance against a ResNet-50 baseline, which consistently underperformed EfficientNetB4. Our EfficientNetB4 model achieved 96% accuracy in object classification and 90% accuracy in threat-level prediction, underscoring its promise for applications in surveillance, defense, and airspace management. Although the title references detection, this study focuses specifically on classification and threat-level inference using pre-localized airborne object images provided by existing datasets.
In this paper, the CD-TWINSAFE is introduced, a V2I-based digital twin for Autonomous Vehicles. The proposed architecture is composed of two stacks running simultaneously, an on-board driving stack that includes a stereo camera for scene understanding, and a digital twin stack that runs an Unreal Engine 5 replica of the scene viewed by the camera as well as returning safety alerts to the cockpit. The on-board stack is implemented on the vehicle side including 2 main autonomous modules; localization and perception. The position and orientation of the ego vehicle are obtained using on-board sensors. Furthermore, the perception module is responsible for processing 20-fps images from stereo camera and understands the scene through two complementary pipelines. The pipeline are working on object detection and feature extraction including object velocity, yaw and the safety metrics time-to-collision and time-headway. The collected data form the driving stack are sent to the infrastructure side through the ROS-enabled architecture in the form of custom ROS2 messages and sent over UDP links that ride a 4G modem for V2I communication. The environment is monitored via the digital twin through the shared messages which update the information of the spawned ego vehicle and detected objects based on the real-time localization and perception data. Several tests with different driving scenarios to confirm the validity and real-time response of the proposed architecture.
In this research, we analyze the performance of Membership Inference Tests (MINT), focusing on determining whether given data were utilized during the training phase, specifically in the domain of object recognition. Within the area of object recognition, we propose and develop architectures tailored for MINT models. These architectures aim to optimize performance and efficiency in data utilization, offering a tailored solution to tackle the complexities inherent in the object recognition domain. We conducted experiments involving an object detection model, an embedding extractor, and a MINT module. These experiments were performed in three public databases, totaling over 174K images. The proposed architecture leverages convolutional layers to capture and model the activation patterns present in the data during the training process. Through our analysis, we are able to identify given data used for testing and training, achieving precision rates ranging between 70% and 80%, contingent upon the depth of the detection module layer chosen for input to the MINT module. Additionally, our studies entail an analysis of the factors influencing the MINT Module, delving into the contributing elements behind more transparent training processes.
Autonomous robotic systems are widely deployed in smart factories and operate in dynamic, uncertain, and human-involved environments that require low-latency and robust fault detection and recovery (FDR). However, existing FDR frameworks exhibit various limitations, such as significant delays in communication and computation, and unreliability in robot motion/trajectory generation, mainly because the communication-computation-control (3C) loop is designed without considering the downstream FDR goal. To address this, we propose a novel Goal-oriented Communication (GoC) framework that jointly designs the 3C loop tailored for fast and robust robotic FDR, with the goal of minimising the FDR time while maximising the robotic task (e.g., workpiece sorting) success rate. For fault detection, our GoC framework innovatively defines and extracts the 3D scene graph (3D-SG) as the semantic representation via our designed representation extractor, and detects faults by monitoring spatial relationship changes in the 3D-SG. For fault recovery, we fine-tune a small language model (SLM) via Low-Rank Adaptation (LoRA) and enhance its reasoning and generalization capabilities via knowledge distillation to generate recovery motions for robots. We also design a lightweight goal-oriented digital twin reconstruction module to refine the recovery motions generated by the SLM when fine-grained robotic control is required, using only task-relevant object contours for digital twin reconstruction. Extensive simulations demonstrate that our GoC framework reduces the FDR time by up to 82.6% and improves the task success rate by up to 76%, compared to the state-of-the-art frameworks that rely on vision language models for fault detection and large language models for fault recovery.
Large language models (LLMs) have achieved remarkable progress in code generation, yet their potential for software protection remains largely untapped. Reverse engineering continues to threaten software security, while traditional virtual machine protection (VMP) relies on rigid, rule-based transformations that are costly to design and vulnerable to automated analysis. In this work, we present the first protection-aware framework that learns robust representations of VMP-protected code. Our approach builds large-scale paired datasets of source code and normalized VM implementations, and introduces hierarchical dependency modeling at intra-, preceding-, and inter-instruction levels. We jointly optimize language modeling with functionality-aware and protection-aware contrastive objectives to capture both semantic equivalence and protection strength. To further assess resilience, we propose a protection effectiveness optimization task that quantifies and ranks different VM variants derived from the same source. Coupled with a two-stage continual pre-training and fine-tuning pipeline, our method enables models to generate, compare, and reason over protected code. Extensive experiments show that our framework significantly improves robustness across diverse protection levels, opening a new research direction for learning-based software defense. In this work, we present ShieldedCode, the first protection-aware framework that learns robust representations of VMP-protected code. Our method achieves 26.95% Pass@1 on L0 VM code generation compared to 22.58% for GPT-4o., and improves binary similarity detection Recall@1 by 10% over state of art methods like jTrans.
The adoption of Large Language Models (LLMs) in scientific writing promises efficiency but risks introducing informational entropy. While "hallucinated papers" are a known artifact, the systematic degradation of valid citation chains remains unquantified. We conducted a forensic audit of 50 recent survey papers in Artificial Intelligence (N=5,514 citations) published between September 2024 and January 2026. We utilized a hybrid verification pipeline combining DOI resolution, Crossref metadata analysis, Semantic Scholar queries, and fuzzy text matching to distinguish between formatting errors ("Sloppiness") and verifiable non-existence ("Phantoms). We detect a persistent 17.0% Phantom Rate -- citations that cannot be resolved to any digital object despite aggressive forensic recovery. Diagnostic categorization reveals three distinct failure modes: pure hallucinations (5.1%), hallucinated identifiers with valid titles (16.4%), and parsing-induced matching failures (78.5%). Longitudinal analysis reveals a flat trend (+0.07 pp/month), suggesting that high-entropy citation practices have stabilized as an endemic feature of the field. The scientific citation graph in AI survey literature exhibits "link rot" at scale. This suggests a mechanism where AI tools act as "lazy research assistants," retrieving correct titles but hallucinating metadata, thereby severing the digital chain of custody required for reproducible science.