Object detection is a computer vision task in which the goal is to detect and locate objects of interest in an image or video. The task involves identifying the position and boundaries of objects in an image, and classifying the objects into different categories. It forms a crucial part of vision recognition, alongside image classification and retrieval.
Egocentric Human-Object Interaction (EHOI) analysis is crucial for industrial safety, yet the development of robust models is hindered by the scarcity of annotated domain-specific data. We address this challenge by introducing a data generation framework that combines synthetic data with a diffusion-based process to augment real-world images with realistic Personal Protective Equipment (PPE). We present GlovEgo-HOI, a new benchmark dataset for industrial EHOI, and GlovEgo-Net, a model integrating Glove-Head and Keypoint- Head modules to leverage hand pose information for enhanced interaction detection. Extensive experiments demonstrate the effectiveness of the proposed data generation framework and GlovEgo-Net. To foster further research, we release the GlovEgo-HOI dataset, augmentation pipeline, and pre-trained models at: GitHub project.
In disaster scenarios, ensuring both reliable communication and situational awareness becomes a critical challenge due to the partial or complete collapse of terrestrial networks. This paper proposes an integrated sensing and communication (ISAC) over non-terrestrial networks (NTN) architecture referred to as ISAC-over-NTN that integrates multiple uncrewed aerial vehicles (UAVs) and a high-altitude platform station (HAPS) to maintain resilient and reliable network operations in post-disaster conditions. We aim to achieve two main objectives: i) provide a reliable communication infrastructure, thereby ensuring the continuity of search-and-rescue activities and connecting people to their loved ones, and ii) detect users, such as those trapped under rubble or those who are mobile, using a Doppler-based mobility detection model. We employ an innovative beamforming method that simultaneously transmits data and detects Doppler-based mobility by integrating multi-user multiple-input multiple-output (MU-MIMO) communication and monostatic sensing within the same transmission chain. The results show that the proposed framework maintains reliable connectivity and achieves high detection accuracy of users in critical locations, reaching 90% motion detection sensitivity and 88% detection accuracy.
Evaluating whether text-to-image models follow explicit spatial instructions is difficult to automate. Object detectors may miss targets or return multiple plausible detections, and simple geometric tests can become ambiguous in borderline cases. Spatial evaluation is naturally a selective prediction problem, the checker may abstain when evidence is weak and report confidence so that results can be interpreted as a risk coverage tradeoff rather than a single score. We introduce SpatialBench-UC, a small, reproducible benchmark for pairwise spatial relations. The benchmark contains 200 prompts (50 object pairs times 4 relations) grouped into 100 counterfactual pairs obtained by swapping object roles. We release a benchmark package, versioned prompts, pinned configs, per-sample checker outputs, and report tables, enabling reproducible and auditable comparisons across models. We also include a lightweight human audit used to calibrate the checker's abstention margin and confidence threshold. We evaluate three baselines, Stable Diffusion 1.5, SD 1.5 BoxDiff, and SD 1.4 GLIGEN. The checker reports pass rate and coverage as well as conditional pass rates on decided samples. The results show that grounding methods substantially improve both pass rate and coverage, while abstention remains a dominant factor due mainly to missing detections.
Vision In-Context Learning (VICL) enables inpainting models to quickly adapt to new visual tasks from only a few prompts. However, existing methods suffer from two key issues: (1) selecting only the most similar prompt discards complementary cues from other high-quality prompts; and (2) failing to exploit the structured information implied by different prompt arrangements. We propose an end-to-end VICL framework to overcome these limitations. Firstly, an adaptive Fusion Module aggregates critical patterns and annotations from multiple prompts to form more precise contextual prompts. Secondly, we introduce arrangement-specific lightweight MLPs to decouple layout priors from the core model, while minimally affecting the overall model. In addition, an bidirectional fine-tuning mechanism swaps the roles of query and prompt, encouraging the model to reconstruct the original prompt from fused context and thus enhancing collaboration between the fusion module and the inpainting model. Experiments on foreground segmentation, single-object detection, and image colorization demonstrate superior results and strong cross-task generalization of our method.
Detecting vulnerable road users (VRUs), particularly children and adolescents, in low light and adverse weather conditions remains a critical challenge in computer vision, surveillance, and autonomous vehicle systems. This paper presents a purpose-built lightweight object detection model designed to identify young pedestrians in various environmental scenarios. To address these challenges, our approach leverages thermal imaging from long-wave infrared (LWIR) cameras, which enhances detection reliability in conditions where traditional RGB cameras operating in the visible spectrum fail. Based on the YOLO11 architecture and customized for thermal detection, our model, termed LTV-YOLO (Lightweight Thermal Vision YOLO), is optimized for computational efficiency, accuracy and real-time performance on edge devices. By integrating separable convolutions in depth and a feature pyramid network (FPN), LTV-YOLO achieves strong performance in detecting small-scale, partially occluded, and thermally distinct VRUs while maintaining a compact architecture. This work contributes a practical and scalable solution to improve pedestrian safety in intelligent transportation systems, particularly in school zones, autonomous navigation, and smart city infrastructure. Unlike prior thermal detectors, our contribution is task-specific: a thermally only edge-capable design designed for young and small VRUs (children and distant adults). Although FPN and depthwise separable convolutions are standard components, their integration into a thermal-only pipeline optimized for short/occluded VRUs under adverse conditions is, to the best of our knowledge, novel.
Visual In-Context Learning (VICL) has emerged as a powerful paradigm, enabling models to perform novel visual tasks by learning from in-context examples. The dominant "retrieve-then-prompt" approach typically relies on selecting the single best visual prompt, a practice that often discards valuable contextual information from other suitable candidates. While recent work has explored fusing the top-K prompts into a single, enhanced representation, this still simply collapses multiple rich signals into one, limiting the model's reasoning capability. We argue that a more multi-faceted, collaborative fusion is required to unlock the full potential of these diverse contexts. To address this limitation, we introduce a novel framework that moves beyond single-prompt fusion towards an multi-combination collaborative fusion. Instead of collapsing multiple prompts into one, our method generates three contextual representation branches, each formed by integrating information from different combinations of top-quality prompts. These complementary guidance signals are then fed into proposed MULTI-VQGAN architecture, which is designed to jointly interpret and utilize collaborative information from multiple sources. Extensive experiments on diverse tasks, including foreground segmentation, single-object detection, and image colorization, highlight its strong cross-task generalization, effective contextual fusion, and ability to produce more robust and accurate predictions than existing methods.
Achieving bound consistency for the no-overlap constraint is known to be NP-complete. Therefore, several polynomial-time tightening techniques, such as edge finding, not-first-not-last reasoning, and energetic reasoning, have been introduced for this constraint. In this work, we derive the first bound-consistent algorithm for the no-overlap constraint. By building on the no-overlap MDD defined by Ciré and van Hoeve, we extract bounds of the time window of the jobs, allowing us to tighten start and end times in time polynomial in the number of nodes of the MDD. Similarly, to bound the size and time-complexity, we limit the width of the MDD to a threshold, creating a relaxed MDD that can also be used to relax the bound-consistent filtering. Through experiments on a sequencing problem with time windows and a just-in-time objective ($1 \mid r_j, d_j, \bar{d}_j \mid \sum E_j + \sum T_j$), we observe that the proposed filtering, even with a threshold on the width, achieves a stronger reduction in the number of nodes visited in the search tree compared to the previously proposed precedence-detection algorithm of Ciré and van Hoeve. The new filtering also appears to be complementary to classical propagation methods for the no-overlap constraint, allowing a substantial reduction in both the number of nodes and the solving time on several instances.
In this paper, we present an automated pipeline for generating domain-specific synthetic datasets with diffusion models, addressing the distribution shift between pre-trained models and real-world deployment environments. Our three-stage framework first synthesizes target objects within domain-specific backgrounds through controlled inpainting. The generated outputs are then validated via a multi-modal assessment that integrates object detection, aesthetic scoring, and vision-language alignment. Finally, a user-preference classifier is employed to capture subjective selection criteria. This pipeline enables the efficient construction of high-quality, deployable datasets while reducing reliance on extensive real-world data collection.
Vision-Language Models (VLMs) demonstrate impressive capabilities across multimodal tasks, yet exhibit systematic spatial reasoning failures, achieving only 49% (CLIP) to 54% (BLIP-2) accuracy on basic directional relationships. For safe deployment in robotics and autonomous systems, we need to predict when to trust VLM spatial predictions rather than accepting all outputs. We propose a vision-based confidence estimation framework that validates VLM predictions through independent geometric verification using object detection. Unlike text-based approaches relying on self-assessment, our method fuses four signals via gradient boosting: geometric alignment between VLM claims and coordinates, spatial ambiguity from overlap, detection quality, and VLM internal uncertainty. We achieve 0.674 AUROC on BLIP-2 (34.0% improvement over text-based baselines) and 0.583 AUROC on CLIP (16.1% improvement), generalizing across generative and classification architectures. Our framework enables selective prediction: at 60% target accuracy, we achieve 61.9% coverage versus 27.6% baseline (2.2x improvement) on BLIP-2. Feature analysis reveals vision-based signals contribute 87.4% of model importance versus 12.7% from VLM confidence, validating that external geometric verification outperforms self-assessment. We demonstrate reliable scene graph construction where confidence-based pruning improves precision from 52.1% to 78.3% while retaining 68.2% of edges.
Understanding the physical world, including object dynamics, material properties, and causal interactions, remains a core challenge in artificial intelligence. Although recent multi-modal large language models (MLLMs) have demonstrated impressive general reasoning capabilities, they still fall short of achieving human-level understanding of physical principles. Existing datasets for physical reasoning either rely on real-world videos, which incur high annotation costs, or on synthetic simulations, which suffer from limited realism and diversity. In this paper, we propose a novel paradigm that leverages glitches in gameplay videos, referring to visual anomalies that violate predefined physical laws, as a rich and scalable supervision source for physical world understanding. We introduce PhysGame, an meta information guided instruction-tuning dataset containing 140,057 glitch-centric question-answer pairs across five physical domains and sixteen fine-grained categories. To ensure data accuracy, we design a prompting strategy that utilizes gameplay metadata such as titles and descriptions to guide high-quality QA generation. Complementing PhysGame, we construct GameBench, an expert-annotated benchmark with 880 glitch-identified gameplay videos designed to evaluate physical reasoning capabilities. Extensive experiments show that PhysGame significantly enhances both Game2Real transferability, improving the real world physical reasoning performance of Qwen2.5VL by 2.5% on PhysBench, and Game2General transferability, yielding a 1.9% gain on the MVBench benchmark. Moreover, PhysGame-tuned models achieve a 3.7% absolute improvement on GameBench, demonstrating enhanced robustness in detecting physical implausibilities. These results indicate that learning from gameplay anomalies offers a scalable and effective pathway toward advancing physical world understanding in multimodal intelligence.