Information extraction is the process of automatically extracting structured information from unstructured text data.
Diagnosing dental diseases from radiographs is time-consuming and challenging due to the subtle nature of diagnostic evidence. Existing methods, which rely on object detection models designed for natural images with more distinct target patterns, struggle to detect dental diseases that present with far less visual support. To address this challenge, we propose {\bf DentalX}, a novel context-aware dental disease detection approach that leverages oral structure information to mitigate the visual ambiguity inherent in radiographs. Specifically, we introduce a structural context extraction module that learns an auxiliary task: semantic segmentation of dental anatomy. The module extracts meaningful structural context and integrates it into the primary disease detection task to enhance the detection of subtle dental diseases. Extensive experiments on a dedicated benchmark demonstrate that DentalX significantly outperforms prior methods in both tasks. This mutual benefit arises naturally during model optimization, as the correlation between the two tasks is effectively captured. Our code is available at https://github.com/zhiqin1998/DentYOLOX.
Accurate survival prediction in Non-Small Cell Lung Cancer (NSCLC) requires the integration of heterogeneous clinical, radiological, and histopathological information. While Multimodal Deep Learning (MDL) offers a promises for precision prognosis and survival prediction, its clinical applicability is severely limited by small cohort sizes and the presence of missing modalities, often forcing complete-case filtering or aggressive imputation. In this work, we present a missing-aware multimodal survival framework that integrates Computed Tomography (CT), Whole-Slide Histopathology (WSI) Images, and structured clinical variables for overall survival modeling in unresectable stage II-III NSCLC. By leveraging Foundation Models (FM) for modality-specific feature extraction and a missing-aware encoding strategy, the proposed approach enables intermediate multimodal fusion under naturally incomplete modality profiles. The proposed architecture is resilient to missing modalities by design, allowing the model to utilize all available data without being forced to drop patients during training or inference. Experimental results demonstrate that intermediate fusion consistently outperforms unimodal baselines as well as early and late fusion strategies, with the strongest performance achieved by the fusion of WSI and clinical modalities (73.30 C-index). Further analyses of modality importance reveal an adaptive behavior in which less informative modalities, i.e., CT modality, are automatically down-weighted and contribute less to the final survival prediction.
As the volume of unstructured text continues to grow across domains, there is an urgent need for scalable methods that enable interpretable organization, summarization, and retrieval of information. This work presents a unified framework for interpretable topic modeling, zero-shot topic labeling, and topic-guided semantic retrieval over large agricultural text corpora. Leveraging BERTopic, we extract semantically coherent topics. Each topic is converted into a structured prompt, enabling a language model to generate meaningful topic labels and summaries in a zero-shot manner. Querying and document exploration are supported via dense embeddings and vector search, while a dedicated evaluation module assesses topical coherence and bias. This framework supports scalable and interpretable information access in specialized domains where labeled data is limited.
Vision-Language-Action (VLA) models have emerged as essential generalist robot policies for diverse manipulation tasks, conventionally relying on directly translating multimodal inputs into actions via Vision-Language Model (VLM) embeddings. Recent advancements have introduced explicit intermediary reasoning, such as sub-task prediction (language) or goal image synthesis (vision), to guide action generation. However, these intermediate reasoning are often indirect and inherently limited in their capacity to convey the full, granular information required for precise action execution. Instead, we posit that the most effective form of reasoning is one that deliberates directly in the action space. We introduce Action Chain-of-Thought (ACoT), a paradigm where the reasoning process itself is formulated as a structured sequence of coarse action intents that guide the final policy. In this paper, we propose ACoT-VLA, a novel architecture that materializes the ACoT paradigm. Specifically, we introduce two complementary components: an Explicit Action Reasoner (EAR) and Implicit Action Reasoner (IAR). The former proposes coarse reference trajectories as explicit action-level reasoning steps, while the latter extracts latent action priors from internal representations of multimodal input, co-forming an ACoT that conditions the downstream action head to enable grounded policy learning. Extensive experiments in real-world and simulation environments demonstrate the superiority of our proposed method, which achieves 98.5%, 84.1%, and 47.4% on LIBERO, LIBERO-Plus and VLABench, respectively.
While much of the current research in deep learning-based vulnerability detection relies on disassembled binaries, this paper explores the feasibility of extracting features directly from raw x86-64 machine code. Although assembly language is more interpretable for humans, it requires more complex models to capture token-level context. In contrast, machine code may enable more efficient, lightweight models and preserve all information that might be lost in disassembly. This paper approaches the task of vulnerability detection through an exploratory study on two specific deep learning model architectures and aims to systematically evaluate their performance across three vulnerability types. The results demonstrate that graph-based models consistently outperform sequential models, emphasizing the importance of control flow relationships, and that machine code contains sufficient information for effective vulnerability discovery.
Quantitative optical measurement of critical mechanical parameters -- such as plume flow fields, shock wave structures, and nozzle oscillations -- during rocket launch faces severe challenges due to extreme imaging conditions. Intense combustion creates dense particulate haze and luminance variations exceeding 120 dB, degrading image data and undermining subsequent photogrammetric and velocimetric analyses. To address these issues, we propose a hardware-algorithm co-design framework that combines a custom Spatially Varying Exposure (SVE) sensor with a physics-aware dehazing algorithm. The SVE sensor acquires multi-exposure data in a single shot, enabling robust haze assessment without relying on idealized atmospheric models. Our approach dynamically estimates haze density, performs region-adaptive illumination optimization, and applies multi-scale entropy-constrained fusion to effectively separate haze from scene radiance. Validated on real launch imagery and controlled experiments, the framework demonstrates superior performance in recovering physically accurate visual information of the plume and engine region. This offers a reliable image basis for extracting key mechanical parameters, including particle velocity, flow instability frequency, and structural vibration, thereby supporting precise quantitative analysis in extreme aerospace environments.
Interpretation of imaging findings based on morphological characteristics is important for diagnosing pulmonary nodules on chest computed tomography (CT) images. In this study, we constructed a visual question answering (VQA) dataset from structured data in an open dataset and investigated an image-finding generation method for chest CT images, with the aim of enabling interactive diagnostic support that presents findings based on questions that reflect physicians' interests rather than fixed descriptions. In this study, chest CT images included in the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) datasets were used. Regions of interest surrounding the pulmonary nodules were extracted from these images, and image findings and questions were defined based on morphological characteristics recorded in the database. A dataset comprising pairs of cropped images, corresponding questions, and image findings was constructed, and the VQA model was fine-tuned on it. Language evaluation metrics such as BLEU were used to evaluate the generated image findings. The VQA dataset constructed using the proposed method contained image findings with natural expressions as radiological descriptions. In addition, the generated image findings showed a high CIDEr score of 3.896, and a high agreement with the reference findings was obtained through evaluation based on morphological characteristics. We constructed a VQA dataset for chest CT images using structured information on the morphological characteristics from the LIDC-IDRI dataset. Methods for generating image findings in response to these questions have also been investigated. Based on the generated results and evaluation metric scores, the proposed method was effective as an interactive diagnostic support system that can present image findings according to physicians' interests.
Charts are high-density visual carriers of complex data and medium for information extraction and analysis. Due to the need for precise and complex visual reasoning, automated chart understanding poses a significant challenge to existing Multimodal Large Language Models (MLLMs). Many MLLMs trained with reinforcement learning (RL) face the challenge of credit assignment. Their advantage estimation, typically performed at the trajectory level, cannot distinguish between correct and incorrect reasoning steps within a single generated response. To address this limitation, we introduce SketchVL, a novel MLLM that optimized with FinePO, a new RL algorithm designed for fine-grained credit assignment within each trajectory. SketchVL's methodology involves drawing its intermediate reasoning steps as markers on the image and feeding the annotated image back to itself, creating a robust, multi-step reasoning process. During training, the FinePO algorithm leverages a Fine-grained Process Reward Model (FinePRM) to score each drawing action within a trajectory, thereby precisely assigning credit for each step. This mechanism allows FinePO to more strongly reward correct tokens when a trajectory is globally successful, and more heavily penalize incorrect tokens when the trajectory is globally suboptimal, thus achieving fine-grained reinforcement signals. Experiments show that SketchVL learns to align its step-level behavior with the FinePRM, achieving an average performance gain of 7.23\% over its base model across chart datasets, natural image datasets, and mathematics, providing a promising new direction for training powerful reasoning models.
Polarisation research has demonstrated how people cluster in homogeneous groups with opposing opinions. However, this effect emerges not only through interaction between people, limiting communication between groups, but also between narratives, shaping opinions and partisan identities. Yet, how polarised groups collectively construct and negotiate opposing interpretations of reality, and whether narratives move between groups despite limited interactions, remains unexplored. To address this gap, we formalise the concept of narrative polarisation and demonstrate its measurement in 212 YouTube videos and 90,029 comments on the Israeli-Palestinian conflict. Based on structural narrative theory and implemented through a large language model, we extract the narrative roles assigned to central actors in two partisan information environments. We find that while videos produce highly polarised narratives, comments significantly reduce narrative polarisation, harmonising discourse on the surface level. However, on a deeper narrative level, recurring narrative motifs reveal additional differences between partisan groups.
Radio astronomy is an indispensable discipline for observing distant celestial objects. Measurements of wave signals from radio telescopes, called visibility, need to be transformed into images for astronomical observations. These dirty images blend information from real sources and artifacts. Therefore, astronomers usually perform reconstruction before imaging to obtain cleaner images. Existing methods consider only a single modality of sparse visibility data, resulting in images with remaining artifacts and insufficient modeling of correlation. To enhance the extraction of visibility information and emphasize output quality in the image domain, we propose VVTRec, a multimodal radio interferometric data reconstruction method with visibility-guided visual and textual modality enrichment. In our VVTRec, sparse visibility is transformed into image-form and text-form features to obtain enhancements in terms of spatial and semantic information, improving the structural integrity and accuracy of images. Also, we leverage Vision-Language Models (VLMs) to achieve additional training-free performance improvements. VVTRec enables sparse visibility, as a foreign modality unseen by VLMs, to accurately extract pre-trained knowledge as a supplement. Our experiments demonstrate that VVTRec effectively enhances imaging results by exploiting multimodal information without introducing excessive computational overhead.