Information extraction is the process of automatically extracting structured information from unstructured text data.
Understanding affective polarization in online discourse is crucial for evaluating the societal impact of social media interactions. This study presents a novel framework that leverages large language models (LLMs) and domain-informed heuristics to systematically analyze and quantify affective polarization in discussions on divisive topics such as climate change and gun control. Unlike most prior approaches that relied on sentiment analysis or predefined classifiers, our method integrates LLMs to extract stance, affective tone, and agreement patterns from large-scale social media discussions. We then apply a rule-based scoring system capable of quantifying affective polarization even in small conversations consisting of single interactions, based on stance alignment, emotional content, and interaction dynamics. Our analysis reveals distinct polarization patterns that are event dependent: (i) anticipation-driven polarization, where extreme polarization escalates before well-publicized events, and (ii) reactive polarization, where intense affective polarization spikes immediately after sudden, high-impact events. By combining AI-driven content annotation with domain-informed scoring, our framework offers a scalable and interpretable approach to measuring affective polarization. The source code is publicly available at: https://github.com/hasanjawad001/llm-social-media-polarization.
This research aims to develop a novel deep learning network, GBU-Net, utilizing a group-batch-normalized U-Net framework, specifically designed for the precise semantic segmentation of the left ventricle in short-axis cine MRI scans. The methodology includes a down-sampling pathway for feature extraction and an up-sampling pathway for detail restoration, enhanced for medical imaging. Key modifications include techniques for better contextual understanding crucial in cardiac MRI segmentation. The dataset consists of 805 left ventricular MRI scans from 45 patients, with comparative analysis using established metrics such as the dice coefficient and mean perpendicular distance. GBU-Net significantly improves the accuracy of left ventricle segmentation in cine MRI scans. Its innovative design outperforms existing methods in tests, surpassing standard metrics like the dice coefficient and mean perpendicular distance. The approach is unique in its ability to capture contextual information, often missed in traditional CNN-based segmentation. An ensemble of the GBU-Net attains a 97% dice score on the SunnyBrook testing dataset. GBU-Net offers enhanced precision and contextual understanding in left ventricle segmentation for surgical robotics and medical analysis.
Target search and tracking (SAT) is a fundamental problem for various robotic applications such as search and rescue and environmental exploration. This paper proposes an informative trajectory planning approach, namely ReSPIRe, for SAT in unknown cluttered environments under considerably inaccurate prior target information and limited sensing field of view. We first develop a novel sigma point-based approximation approach to fast and accurately estimate mutual information reward under non-Gaussian belief distributions, utilizing informative sampling in state and observation spaces to mitigate the computational intractability of integral calculation. To tackle significant uncertainty associated with inadequate prior target information, we propose the hierarchical particle structure in ReSPIRe, which not only extracts critical particles for global route guidance, but also adjusts the particle number adaptively for planning efficiency. Building upon the hierarchical structure, we develop the reusable belief tree search approach to build a policy tree for online trajectory planning under uncertainty, which reuses rollout evaluation to improve planning efficiency. Extensive simulations and real-world experiments demonstrate that ReSPIRe outperforms representative benchmark methods with smaller MI approximation error, higher search efficiency, and more stable tracking performance, while maintaining outstanding computational efficiency.
Graph federated learning enables the collaborative extraction of high-order information from distributed subgraphs while preserving the privacy of raw data. However, graph data often exhibits overlap among different clients. Previous research has demonstrated certain benefits of overlapping data in mitigating data heterogeneity. However, the negative effects have not been explored, particularly in cases where the overlaps are imbalanced across clients. In this paper, we uncover the unfairness issue arising from imbalanced overlapping subgraphs through both empirical observations and theoretical reasoning. To address this issue, we propose FairGFL (FAIRness-aware subGraph Federated Learning), a novel algorithm that enhances cross-client fairness while maintaining model utility in a privacy-preserving manner. Specifically, FairGFL incorporates an interpretable weighted aggregation approach to enhance fairness across clients, leveraging privacy-preserving estimation of their overlapping ratios. Furthermore, FairGFL improves the tradeoff between model utility and fairness by integrating a carefully crafted regularizer into the federated composite loss function. Through extensive experiments on four benchmark graph datasets, we demonstrate that FairGFL outperforms four representative baseline algorithms in terms of both model utility and fairness.
Video Individual Counting (VIC) is a recently introduced task aiming to estimate pedestrian flux from a video. It extends Video Crowd Counting (VCC) beyond the per-frame pedestrian count. In contrast to VCC that learns to count pedestrians across frames, VIC must identify co-existent pedestrians between frames, which turns out to be a correspondence problem. Existing VIC approaches, however, can underperform in congested scenes such as metro commuting. To address this, we build WuhanMetroCrowd, one of the first VIC datasets that characterize crowded, dynamic pedestrian flows. It features sparse-to-dense density levels, short-to-long video clips, slow-to-fast flow variations, front-to-back appearance changes, and light-to-heavy occlusions. To better adapt VIC approaches to crowds, we rethink the nature of VIC and recognize two informative priors: i) the social grouping prior that indicates pedestrians tend to gather in groups and ii) the spatial-temporal displacement prior that informs an individual cannot teleport physically. The former inspires us to relax the standard one-to-one (O2O) matching used by VIC to one-to-many (O2M) matching, implemented by an implicit context generator and a O2M matcher; the latter facilitates the design of a displacement prior injector, which strengthens not only O2M matching but also feature extraction and model training. These designs jointly form a novel and strong VIC baseline OMAN++. Extensive experiments show that OMAN++ not only outperforms state-of-the-art VIC baselines on the standard SenseCrowd, CroHD, and MovingDroneCrowd benchmarks, but also indicates a clear advantage in crowded scenes, with a 38.12% error reduction on our WuhanMetroCrowd dataset. Code, data, and pretrained models are available at https://github.com/tiny-smart/OMAN.
Adapting general-domain retrievers to scientific domains is challenging due to the scarcity of large-scale domain-specific relevance annotations and the substantial mismatch in vocabulary and information needs. Recent approaches address these issues through two independent directions that leverage large language models (LLMs): (1) generating synthetic queries for fine-tuning, and (2) generating auxiliary contexts to support relevance matching. However, both directions overlook the diverse academic concepts embedded within scientific documents, often producing redundant or conceptually narrow queries and contexts. To address this limitation, we introduce an academic concept index, which extracts key concepts from papers and organizes them guided by an academic taxonomy. This structured index serves as a foundation for improving both directions. First, we enhance the synthetic query generation with concept coverage-based generation (CCQGen), which adaptively conditions LLMs on uncovered concepts to generate complementary queries with broader concept coverage. Second, we strengthen the context augmentation with concept-focused auxiliary contexts (CCExpand), which leverages a set of document snippets that serve as concise responses to the concept-aware CCQGen queries. Extensive experiments show that incorporating the academic concept index into both query generation and context augmentation leads to higher-quality queries, better conceptual alignment, and improved retrieval performance.
Being infinite dimensional, non-parametric information geometry has long faced an "intractability barrier" due to the fact that the Fisher-Rao metric is now a functional incurring difficulties in defining its inverse. This paper introduces a novel framework to resolve the intractability with an Orthogonal Decomposition of the Tangent Space ($T_fM=S \oplus S^{\perp}$), where S represents an observable covariate subspace. Through the decomposition, we derive the Covariate Fisher Information Matrix (cFIM), denoted as $G_f$, which is a finite-dimensional and computable representative of information extractable from the manifold's geometry. Indeed, by proving the Trace Theorem: $H_G(f)=\text{Tr}(G_f)$, we establish a rigorous foundation for the G-entropy previously introduced by us, thereby identifying it not merely as a gradient-based regularizer, but also as a fundamental geometric invariant representing the total explainable statistical information captured by the probability distribution associated with the model. Furthermore, we establish a link between $G_f$ and the second-order derivative (i.e. the curvature) of the KL-divergence, leading to the notion of Covariate Cramér-Rao Lower Bound(CRLB). We demonstrate that $G_f$ is congruent to the Efficient Fisher Information Matrix, thereby providing fundamental limits of variance for semi-parametric estimators. Finally, we apply our geometric framework to the Manifold Hypothesis, lifting the latter from a heuristic assumption into a testable condition of rank-deficiency within the cFIM. By defining the Information Capture Ratio, we provide a rigorous method for estimating intrinsic dimensionality in high-dimensional data. In short, our work bridges the gap between abstract information geometry and the demand of explainable AI, by providing a tractable path for revealing the statistical coverage and the efficiency of non-parametric models.
Electrocardiography (ECG) is adopted for identity authentication in wearable devices due to its individual-specific characteristics and inherent liveness. However, existing methods often treat heartbeats as homogeneous signals, overlooking the phase-specific characteristics within the cardiac cycle. To address this, we propose a Hierarchical Phase-Aware Fusion~(HPAF) framework that explicitly avoids cross-feature entanglement through a three-stage design. In the first stage, Intra-Phase Representation (IPR) independently extracts representations for each cardiac phase, ensuring that phase-specific morphological and variation cues are preserved without interference from other phases. In the second stage, Phase-Grouped Hierarchical Fusion (PGHF) aggregates physiologically related phases in a structured manner, enabling reliable integration of complementary phase information. In the final stage, Global Representation Fusion (GRF) further combines the grouped representations and adaptively balances their contributions to produce a unified and discriminative identity representation. Moreover, considering ECG signals are continuously acquired, multiple heartbeats can be collected for each individual. We propose a Heartbeat-Aware Multi-prototype (HAM) enrollment strategy, which constructs a multi-prototype gallery template set to reduce the impact of heartbeat-specific noise and variability. Extensive experiments on three public datasets demonstrate that HPAF achieves state-of-the-art results in the comparison with other methods under both closed and open-set settings.
Persistent homology (PH) has recently emerged as a powerful tool for extracting topological features. Integrating PH into machine learning and deep learning models enhances topology awareness and interpretability. However, most PH methods on graphs rely on a limited set of filtrations, such as degree-based or weight-based filtrations, which overlook richer features like recurring information across the dataset and thus restrict expressive power. In this work, we propose a novel graph filtration called Frequent Subgraph Filtration (FSF), which is derived from frequent subgraphs and produces stable and information-rich frequency-based persistent homology (FPH) features. We study the theoretical properties of FSF and provide both proofs and experimental validation. Beyond persistent homology itself, we introduce two approaches for graph classification: an FPH-based machine learning model (FPH-ML) and a hybrid framework that integrates FPH with graph neural networks (FPH-GNNs) to enhance topology-aware graph representation learning. Our frameworks bridge frequent subgraph mining and topological data analysis, offering a new perspective on topology-aware feature extraction. Experimental results show that FPH-ML achieves competitive or superior accuracy compared with kernel-based and degree-based filtration methods. When integrated into graph neural networks, FPH yields relative performance gains ranging from 0.4 to 21 percent, with improvements of up to 8.2 percentage points over GCN and GIN backbones across benchmarks.
Realizing the full potential of quantum computation requires Quantum Error Correction (QEC). QEC reduces error rates by encoding logical information across redundant physical qubits, enabling errors to be detected and corrected. A common decoder used for this task is Minimum Weight Perfect Matching (MWPM) a graph-based algorithm that relies on edge weights to identify the most likely error chains. In this work, we propose a data-driven decoder named Neural Minimum Weight Perfect Matching (NMWPM). Our decoder utilizes a hybrid architecture that integrates Graph Neural Networks (GNNs) to extract local syndrome features and Transformers to capture long-range global dependencies, which are then used to predict dynamic edge weights for the MWPM decoder. To facilitate training through the non-differentiable MWPM algorithm, we formulate a novel proxy loss function that enables end-to-end optimization. Our findings demonstrate significant performance reduction in the Logical Error Rate (LER) over standard baselines, highlighting the advantage of hybrid decoders that combine the predictive capabilities of neural networks with the algorithmic structure of classical matching.