Information extraction is the process of automatically extracting structured information from unstructured text data.
Annotating medical data for training AI models is often costly and limited due to the shortage of specialists with relevant clinical expertise. This challenge is further compounded by privacy and ethical concerns associated with sensitive patient information. As a result, well-trained medical segmentation models on private datasets constitute valuable intellectual property requiring robust protection mechanisms. Existing model protection techniques primarily focus on classification and generative tasks, while segmentation models-crucial to medical image analysis-remain largely underexplored. In this paper, we propose a novel, stealthy, and harmless method, StealthMark, for verifying the ownership of medical segmentation models under black-box conditions. Our approach subtly modulates model uncertainty without altering the final segmentation outputs, thereby preserving the model's performance. To enable ownership verification, we incorporate model-agnostic explanation methods, e.g. LIME, to extract feature attributions from the model outputs. Under specific triggering conditions, these explanations reveal a distinct and verifiable watermark. We further design the watermark as a QR code to facilitate robust and recognizable ownership claims. We conducted extensive experiments across four medical imaging datasets and five mainstream segmentation models. The results demonstrate the effectiveness, stealthiness, and harmlessness of our method on the original model's segmentation performance. For example, when applied to the SAM model, StealthMark consistently achieved ASR above 95% across various datasets while maintaining less than a 1% drop in Dice and AUC scores, significantly outperforming backdoor-based watermarking methods and highlighting its strong potential for practical deployment. Our implementation code is made available at: https://github.com/Qinkaiyu/StealthMark.
The accelerating growth of the scientific literature makes it increasingly difficult for researchers to track new advances through manual reading alone. Recent progress in large language models (LLMs) has therefore spurred interest in autonomous agents that can read scientific papers and extract task-relevant information. However, most existing approaches rely either on heavily engineered prompting or on a conventional SFT-RL training pipeline, both of which often lead to excessive and low-yield exploration. Drawing inspiration from cognitive science, we propose PaperCompass, a framework that mitigates these issues by separating high-level planning from fine-grained execution. PaperCompass first drafts an explicit plan that outlines the intended sequence of actions, and then performs detailed reasoning to instantiate each step by selecting the parameters for the corresponding function calls. To train such behavior, we introduce Draft-and-Follow Policy Optimization (DFPO), a tailored RL method that jointly optimizes both the draft plan and the final solution. DFPO can be viewed as a lightweight form of hierarchical reinforcement learning, aimed at narrowing the `knowing-doing' gap in LLMs. We provide a theoretical analysis that establishes DFPO's favorable optimization properties, supporting a stable and reliable training process. Experiments on paper-based question answering (Paper-QA) benchmarks show that PaperCompass improves efficiency over strong baselines without sacrificing performance, achieving results comparable to much larger models.
Unsupervised video class incremental learning (uVCIL) represents an important learning paradigm for learning video information without forgetting, and without considering any data labels. Prior approaches have focused on supervised class-incremental learning, relying on using the knowledge of labels and task boundaries, which is costly, requires human annotation, or is simply not a realistic option. In this paper, we propose a simple yet effective approach to address the uVCIL. We first consider a deep feature extractor network, providing a set of representative video features during each task without assuming any class or task information. We then progressively build a series of deep clusters from the extracted features. During the successive task learning, the model updated from the previous task is used as an initial state in order to transfer knowledge to the current learning task. We perform in-depth evaluations on three standard video action recognition datasets, including UCF101, HMDB51, and Something-to-Something V2, by ignoring the labels from the supervised setting. Our approach significantly outperforms other baselines on all datasets.
RAGE systems integrate ideas from automatic evaluation (E) into Retrieval-augmented Generation (RAG). As one such example, we present Crucible, a Nugget-Augmented Generation System that preserves explicit citation provenance by constructing a bank of Q&A nuggets from retrieved documents and uses them to guide extraction, selection, and report generation. Reasoning on nuggets avoids repeated information through clear and interpretable Q&A semantics - instead of opaque cluster abstractions - while maintaining citation provenance throughout the entire generation process. Evaluated on the TREC NeuCLIR 2024 collection, our Crucible system substantially outperforms Ginger, a recent nugget-based RAG system, in nugget recall, density, and citation grounding.
Wi-Fi gesture recognition based on Channel State Information (CSI) is challenged by high-dimensional noise and resource constraints on edge devices. Prevailing end-to-end models tightly couple feature extraction with classification, overlooking the inherent time-frequency sparsity of CSI and leading to redundancy and poor generalization. To address this, this paper proposes a lightweight feature preprocessing module--the Variational Dual-path Attention Network (VDAN). It performs structured feature refinement through frequency-domain filtering and temporal detection. Variational inference is introduced to model the uncertainty in attention weights, thereby enhancing robustness to noise. The design principles of the module are explained from the perspectives of the information bottleneck and regularization. Experiments on a public dataset demonstrate that the learned attention weights align with the physical sparse characteristics of CSI, verifying its interpretability. This work provides an efficient and explainable front-end processing solution for resource-constrained wireless sensing systems.
Information overload and misinformation create significant challenges in extracting meaningful narratives from large news collections. This paper defines the nascent field of Interactive Narrative Analytics (INA), which combines computational narrative extraction with interactive visual analytics to support sensemaking. INA approaches enable the interactive exploration of narrative structures through computational methods and visual interfaces that facilitate human interpretation. The field faces challenges in scalability, interactivity, knowledge integration, and evaluation standardization, yet offers promising opportunities across news analysis, intelligence, scientific literature exploration, and social media analysis. Through the combination of computational and human insight, INA addresses complex challenges in narrative sensemaking.
Retrieval-augmented generation (RAG) systems integrate document retrieval with large language models and have been widely adopted. However, in privacy-related scenarios, RAG introduces a new privacy risk: adversaries can issue carefully crafted queries to exfiltrate sensitive content from the underlying corpus gradually. Although recent studies have demonstrated multi-turn extraction attacks, they rely on heuristics and fail to perform long-term extraction planning. To address these limitations, we formulate the RAG extraction attack as an adaptive stochastic coverage problem (ASCP). In ASCP, each query is treated as a probabilistic action that aims to maximize conditional marginal gain (CMG), enabling principled long-term planning under uncertainty. However, integrating ASCP with practical RAG attack faces three key challenges: unobservable CMG, intractability in the action space, and feasibility constraints. To overcome these challenges, we maintain a global attacker-side state to guide the attack. Building on this idea, we introduce RAGCRAWLER, which builds a knowledge graph to represent revealed information, uses this global state to estimate CMG, and plans queries in semantic space that target unretrieved regions. In comprehensive experiments across diverse RAG architectures and datasets, our proposed method, RAGCRAWLER, consistently outperforms all baselines. It achieves up to 84.4% corpus coverage within a fixed query budget and deliver an average improvement of 20.7% over the top-performing baseline. It also maintains high semantic fidelity and strong content reconstruction accuracy with low attack cost. Crucially, RAGCRAWLER proves its robustness by maintaining effectiveness against advanced RAG systems employing query rewriting and multi-query retrieval strategies. Our work reveals significant security gaps and highlights the pressing need for stronger safeguards for RAG.
Social media increasingly disseminates information through mixed image text posts, but rumors often exploit subtle inconsistencies and forged content, making detection based solely on post content difficult. Deep semantic mismatch rumors, which superficially align images and texts, pose particular challenges and threaten online public opinion. Existing multimodal rumor detection methods improve cross modal modeling but suffer from limited feature extraction, noisy alignment, and inflexible fusion strategies, while ignoring external factual evidence necessary for verifying complex rumors. To address these limitations, we propose a multimodal rumor detection model enhanced with external evidence and forgery features. The model uses a ResNet34 visual encoder, a BERT text encoder, and a forgery feature module extracting frequency-domain traces and compression artifacts via Fourier transformation. BLIP-generated image descriptions bridge image and text semantic spaces. A dual contrastive learning module computes contrastive losses between text image and text description pairs, improving detection of semantic inconsistencies. A gated adaptive feature-scaling fusion mechanism dynamically adjusts multimodal fusion and reduces redundancy. Experiments on Weibo and Twitter datasets demonstrate that our model outperforms mainstream baselines in macro accuracy, recall, and F1 score.
Large language models (LLMs) are increasingly deployed in decision-making tasks, where not only accuracy but also reliable confidence estimates are essential. Well-calibrated confidence enables downstream systems to decide when to trust a model and when to defer to fallback mechanisms. In this work, we conduct a systematic study of calibration in two widely used fine-tuning paradigms: supervised fine-tuning (SFT) and reinforcement learning with verifiable rewards (RLVR). We show that while RLVR improves task performance, it produces extremely overconfident models, whereas SFT yields substantially better calibration, even under distribution shift, though with smaller performance gains. Through targeted experiments, we diagnose RLVR's failure, showing that decision tokens act as extraction steps of the decision in reasoning traces and do not carry confidence information, which prevents reinforcement learning from surfacing calibrated alternatives. Based on this insight, we propose a calibration-aware reinforcement learning formulation that directly adjusts decision-token probabilities. Our method preserves RLVR's accuracy level while mitigating overconfidence, reducing ECE scores up to 9 points.
Dynamic multi-product delivery environments demand rapid coordination of part completion and product-level kitting within hybrid processing and assembly systems to satisfy strict hierarchical supply constraints. The flexible assembly flow shop scheduling problem formally defines dependencies for multi-stage kitting, yet dynamic variants make designing integrated scheduling rules under multi-level time coupling highly challenging. Existing automated heuristic design methods, particularly genetic programming constrained to fixed terminal symbol sets, struggle to capture and leverage dynamic uncertainties and hierarchical dependency information under transient decision states. This study develops an LLM-assisted Dynamic Rule Design framework (LLM4DRD) that automatically evolves integrated online scheduling rules adapted to scheduling features. Firstly, multi-stage processing and assembly supply decisions are transformed into feasible directed edge orderings based on heterogeneous graph. Then, an elite knowledge guided initialization embeds advanced design expertise into initial rules to enhance initial quality. Additionally, a dual-expert mechanism is introduced in which LLM-A evolutionary code to generate candidate rules and LLM-S conducts scheduling evaluation, while dynamic feature-fitting rule evolution combined with hybrid evaluation enables continuous improvement and extracts adaptive rules with strong generalization capability. A series of experiments are conducted to validate the effectiveness of the method. The average tardiness of LLM4DRD is 3.17-12.39% higher than state-of-the-art methods in 20 practical instances used for training and testing, respectively. In 24 scenarios with different resource configurations, order loads, and disturbance levels totaling 480 instances, it achieves 11.10% higher performance than the second best competitor, exhibiting excellent robustness.