Information extraction is the process of automatically extracting structured information from unstructured text data.
Zeroth-Order (ZO) optimization has emerged as a promising solution for fine-tuning LLMs under strict memory constraints, as it avoids the prohibitive memory cost of storing activations for backpropagation. However, existing ZO methods typically employ isotropic perturbations, neglecting the rich structural information available during the forward pass. In this paper, we identify a crucial link between gradient formation and activation structure: the gradient of a linear layer is confined to the subspace spanned by its input activations. Leveraging this insight, we propose Activation-Guided Zeroth-Order optimization (AGZO). Unlike prior methods, AGZO extracts a compact, activation-informed subspace on the fly during the forward pass and restricts perturbations to this low-rank subspace. We provide a theoretical framework showing that AGZO optimizes a subspace-smoothed objective and provably yields update directions with higher cosine similarity to the true gradient than isotropic baselines. Empirically, we evaluate AGZO on Qwen3 and Pangu models across various benchmarks. AGZO consistently outperforms state-of-the-art ZO baselines and significantly narrows the performance gap with first-order fine-tuning, while maintaining almost the same peak memory footprint as other ZO methods.
Integrated Sensing and Communications (ISAC) has emerged as a promising paradigm for Sixth Generation (6G) and Wi-Fi 7 networks, with the communication-centric approach being particularly attractive due to its compatibility with current standards. Typical communication signals comprise both deterministic known pilot signals and random unknown data payloads. Most existing approaches either rely solely on pilots for positioning, thereby ignoring the radar information present in the received data symbols that constitute the majority of each frame, or rely on data decisions, which bounds positioning performance to that of the communication system. To overcome these limitations, we propose a novel method that extracts positioning information from data payloads without decoding them. We consider an opportunistic scenario in which communication signals from a user are captured by an opportunistic radar equipped with a Uniform Linear Arrays of antennas. We show that, in this setting, the estimation can be efficiently implemented using Fast Fourier Transforms. Finally, we demonstrate superior localization performance compared to existing methods in the literature through numerical simulations.
Recent advances in multi-modal detection have significantly improved detection accuracy in challenging environments (e.g., low light, overexposure). By integrating RGB with modalities such as thermal and depth, multi-modal fusion increases data redundancy and system robustness. However, significant challenges remain in effectively extracting task-relevant information both within and across modalities, as well as in achieving precise cross-modal alignment. While CNNs excel at feature extraction, they are limited by constrained receptive fields, strong inductive biases, and difficulty in capturing long-range dependencies. Transformer-based models offer global context but suffer from quadratic computational complexity and are confined to pairwise correlation modeling. Mamba and other State Space Models (SSMs), on the other hand, are hindered by their sequential scanning mechanism, which flattens 2D spatial structures into 1D sequences, disrupting topological relationships and limiting the modeling of complex higher-order dependencies. To address these issues, we propose a multi-modal perception network based on hypergraph theory called M2I2HA. Our architecture includes an Intra-Hypergraph Enhancement module to capture global many-to-many high-order relationships within each modality, and an Inter-Hypergraph Fusion module to align, enhance, and fuse cross-modal features by bridging configuration and spatial gaps between data sources. We further introduce a M2-FullPAD module to enable adaptive multi-level fusion of multi-modal enhanced features within the network, meanwhile enhancing data distribution and flow across the architecture. Extensive object detection experiments on multiple public datasets against baselines demonstrate that M2I2HA achieves state-of-the-art performance in multi-modal object detection tasks.
While generative AI enables high-fidelity UI generation from text prompts, users struggle to articulate design intent and evaluate or refine results-creating gulfs of execution and evaluation. To understand the information needed for UI generation, we conducted a thematic analysis of UI prompting guidelines, identifying key design semantics and discovering that they are hierarchical and interdependent. Leveraging these findings, we developed a system that enables users to specify semantics, visualize relationships, and extract how semantics are reflected in generated UIs. By making semantics serve as an intermediate representation between human intent and AI output, our system bridges both gulfs by making requirements explicit and outcomes interpretable. A comparative user study suggests that our approach enhances users' perceived control over intent expression, outcome interpretation, and facilitates more predictable, iterative refinement. Our work demonstrates how explicit semantic representation enables systematic and explainable exploration of design possibilities in AI-driven UI design.
In real-world data science and enterprise decision-making, critical information is often fragmented across directly queryable structured sources (e.g., SQL, CSV) and "zombie data" locked in unstructured visual documents (e.g., scanned reports, invoice images). Existing data analytics agents are predominantly limited to processing structured data, failing to activate and correlate this high-value visual information, thus creating a significant gap with industrial needs. To bridge this gap, we introduce DataCross, a novel benchmark and collaborative agent framework for unified, insight-driven analysis across heterogeneous data modalities. DataCrossBench comprises 200 end-to-end analysis tasks across finance, healthcare, and other domains. It is constructed via a human-in-the-loop reverse-synthesis pipeline, ensuring realistic complexity, cross-source dependency, and verifiable ground truth. The benchmark categorizes tasks into three difficulty tiers to evaluate agents' capabilities in visual table extraction, cross-modal alignment, and multi-step joint reasoning. We also propose the DataCrossAgent framework, inspired by the "divide-and-conquer" workflow of human analysts. It employs specialized sub-agents, each an expert on a specific data source, which are coordinated via a structured workflow of Intra-source Deep Exploration, Key Source Identification, and Contextual Cross-pollination. A novel reReAct mechanism enables robust code generation and debugging for factual verification. Experimental results show that DataCrossAgent achieves a 29.7% improvement in factuality over GPT-4o and exhibits superior robustness on high-difficulty tasks, effectively activating fragmented "zombie data" for insightful, cross-modal analysis.
End-to-end perception and trajectory prediction from raw sensor data is one of the key capabilities for autonomous driving. Modular pipelines restrict information flow and can amplify upstream errors. Recent query-based, fully differentiable perception-and-prediction (PnP) models mitigate these issues, yet the complementarity of cameras and LiDAR in the query-space has not been sufficiently explored. Models often rely on fusion schemes that introduce heuristic alignment and discrete selection steps which prevent full utilization of available information and can introduce unwanted bias. We propose Li-ViP3D++, a query-based multimodal PnP framework that introduces Query-Gated Deformable Fusion (QGDF) to integrate multi-view RGB and LiDAR in query space. QGDF (i) aggregates image evidence via masked attention across cameras and feature levels, (ii) extracts LiDAR context through fully differentiable BEV sampling with learned per-query offsets, and (iii) applies query-conditioned gating to adaptively weight visual and geometric cues per agent. The resulting architecture jointly optimizes detection, tracking, and multi-hypothesis trajectory forecasting in a single end-to-end model. On nuScenes, Li-ViP3D++ improves end-to-end behavior and detection quality, achieving higher EPA (0.335) and mAP (0.502) while substantially reducing false positives (FP ratio 0.147), and it is faster than the prior Li-ViP3D variant (139.82 ms vs. 145.91 ms). These results indicate that query-space, fully differentiable camera-LiDAR fusion can increase robustness of end-to-end PnP without sacrificing deployability.
Satellite-ground semantic communication (SemCom) is expected to play a pivotal role in convergence of communication and AI (ComAI), particularly in enabling intelligent and efficient multi-user data transmission. However, the inherent bandwidth constraints and user interference in satellite-ground systems pose significant challenges to semantic fidelity and transmission robustness. To address these issues, we propose a sensitivity-aware model division multiple access (S-MDMA) framework tailored for bandwidth-limited multi-user scenarios. The proposed framework first performs semantic extraction and merging based on the MDMA architecture to consolidate redundant information. To further improve transmission efficiency, a semantic sensitivity sorting algorithm is presented, which can selectively retain key semantic features. In addition, to mitigate inter-user interference, the framework incorporates orthogonal embedding of semantic features and introduces a multi-user reconstruction loss function to guide joint optimization. Experimental results on open-source datasets demonstrate that S-MDMA consistently outperforms existing methods, achieving robust and high-fidelity reconstruction across diverse signal-to-noise ratio (SNR) conditions and user configurations.
Deep neural networks are vulnerable to adversarial examples--inputs with imperceptible perturbations causing misclassification. While adversarial transfer within neural networks is well-documented, whether classical ML pipelines using handcrafted features inherit this vulnerability when attacked via neural surrogates remains unexplored. Feature engineering creates information bottlenecks through gradient quantization and spatial binning, potentially filtering high-frequency adversarial signals. We evaluate this hypothesis through the first comprehensive study of adversarial transfer from DNNs to HOG-based classifiers. Using VGG16 as a surrogate, we generate FGSM and PGD adversarial examples and test transfer to four classical classifiers (KNN, Decision Tree, Linear SVM, Kernel SVM) and a shallow neural network across eight HOG configurations on CIFAR-10. Our results strongly refute the protective hypothesis: all classifiers suffer 16.6%-59.1% relative accuracy drops, comparable to neural-to-neural transfer. More surprisingly, we discover attack hierarchy reversal--contrary to patterns where iterative PGD dominates FGSM within neural networks, FGSM causes greater degradation than PGD in 100% of classical ML cases, suggesting iterative attacks overfit to surrogate-specific features that don't survive feature extraction. Block normalization provides partial but insufficient mitigation. These findings demonstrate that adversarial vulnerability is not an artifact of end-to-end differentiability but a fundamental property of image classification systems, with implications for security-critical deployments across computational paradigms.
Existing human-robot interaction systems often lack mechanisms for sustained personalization and dynamic adaptation in multi-user environments, limiting their effectiveness in real-world deployments. We present HARMONI, a multimodal personalization framework that leverages large language models to enable socially assistive robots to manage long-term multi-user interactions. The framework integrates four key modules: (i) a perception module that identifies active speakers and extracts multimodal input; (ii) a world modeling module that maintains representations of the environment and short-term conversational context; (iii) a user modeling module that updates long-term speaker-specific profiles; and (iv) a generation module that produces contextually grounded and ethically informed responses. Through extensive evaluation and ablation studies on four datasets, as well as a real-world scenario-driven user-study in a nursing home environment, we demonstrate that HARMONI supports robust speaker identification, online memory updating, and ethically aligned personalization, outperforming baseline LLM-driven approaches in user modeling accuracy, personalization quality, and user satisfaction.
Longitudinal information in radiology reports refers to the sequential tracking of findings across multiple examinations over time, which is crucial for monitoring disease progression and guiding clinical decisions. Many recent automated radiology report generation methods are designed to capture longitudinal information; however, validating their performance is challenging. There is no proper tool to consistently label temporal changes in both ground-truth and model-generated texts for meaningful comparisons. Existing annotation methods are typically labor-intensive, relying on the use of manual lexicons and rules. Complex rules are closed-source, domain specific and hard to adapt, whereas overly simple ones tend to miss essential specialised information. Large language models (LLMs) offer a promising annotation alternative, as they are capable of capturing nuanced linguistic patterns and semantic similarities without extensive manual intervention. They also adapt well to new contexts. In this study, we therefore propose an LLM-based pipeline to automatically annotate longitudinal information in radiology reports. The pipeline first identifies sentences containing relevant information and then extracts the progression of diseases. We evaluate and compare five mainstream LLMs on these two tasks using 500 manually annotated reports. Considering both efficiency and performance, Qwen2.5-32B was subsequently selected and used to annotate another 95,169 reports from the public MIMIC-CXR dataset. Our Qwen2.5-32B-annotated dataset provided us with a standardized benchmark for evaluating report generation models. Using this new benchmark, we assessed seven state-of-the-art report generation models. Our LLM-based annotation method outperforms existing annotation solutions, achieving 11.3\% and 5.3\% higher F1-scores for longitudinal information detection and disease tracking, respectively.