What is Sentiment Analysis? Sentiment analysis is the process of determining the sentiment of a piece of text, such as a tweet or a review.
Papers and Code
May 18, 2025
Abstract:Large Language Models (LLMs), such as ChatGPT, have prompted academic concerns about their impact on academic writing. Existing studies have primarily examined LLM usage in academic writing through quantitative approaches, such as word frequency statistics and probability-based analyses. However, few have systematically examined the potential impact of LLMs on the linguistic characteristics of academic writing. To address this gap, we conducted a large-scale analysis across 823,798 abstracts published in last decade from arXiv dataset. Through the linguistic analysis of features such as the frequency of LLM-preferred words, lexical complexity, syntactic complexity, cohesion, readability and sentiment, the results indicate a significant increase in the proportion of LLM-preferred words in abstracts, revealing the widespread influence of LLMs on academic writing. Additionally, we observed an increase in lexical complexity and sentiment in the abstracts, but a decrease in syntactic complexity, suggesting that LLMs introduce more new vocabulary and simplify sentence structure. However, the significant decrease in cohesion and readability indicates that abstracts have fewer connecting words and are becoming more difficult to read. Moreover, our analysis reveals that scholars with weaker English proficiency were more likely to use the LLMs for academic writing, and focused on improving the overall logic and fluency of the abstracts. Finally, at discipline level, we found that scholars in Computer Science showed more pronounced changes in writing style, while the changes in Mathematics were minimal.
* Scientometrics,2025
Via

May 22, 2025
Abstract:Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation, but controlling their behavior reliably remains challenging, especially in open-ended generation settings. This paper introduces a novel supervised steering approach that operates in sparse, interpretable representation spaces. We employ sparse autoencoders (SAEs)to obtain sparse latent representations that aim to disentangle semantic attributes from model activations. Then we train linear classifiers to identify a small subspace of task-relevant dimensions in latent representations. Finally, we learn supervised steering vectors constrained to this subspace, optimized to align with target behaviors. Experiments across sentiment, truthfulness, and politics polarity steering tasks with multiple LLMs demonstrate that our supervised steering vectors achieve higher success rates with minimal degradation in generation quality compared to existing methods. Further analysis reveals that a notably small subspace is sufficient for effective steering, enabling more targeted and interpretable interventions.
* 30 pages, 24 figures, 12 tables
Via

Apr 08, 2025
Abstract:Large Language Models (LLMs) have demonstrated impressive performance across various tasks, including sentiment analysis. However, data quality--particularly when sourced from social media--can significantly impact their accuracy. This research explores how textual nuances, including emojis and sarcasm, affect sentiment analysis, with a particular focus on improving data quality through text paraphrasing techniques. To address the lack of labeled sarcasm data, the authors created a human-labeled dataset of 5929 tweets that enabled the assessment of LLM in various sarcasm contexts. The results show that when topic-specific datasets, such as those related to nuclear power, are used to finetune LLMs these models are not able to comprehend accurate sentiment in presence of sarcasm due to less diverse text, requiring external interventions like sarcasm removal to boost model accuracy. Sarcasm removal led to up to 21% improvement in sentiment accuracy, as LLMs trained on nuclear power-related content struggled with sarcastic tweets, achieving only 30% accuracy. In contrast, LLMs trained on general tweet datasets, covering a broader range of topics, showed considerable improvements in predicting sentiment for sarcastic tweets (60% accuracy), indicating that incorporating general text data can enhance sarcasm detection. The study also utilized adversarial text augmentation, showing that creating synthetic text variants by making minor changes significantly increased model robustness and accuracy for sarcastic tweets (approximately 85%). Additionally, text paraphrasing of tweets with fragmented language transformed around 40% of the tweets with low-confidence labels into high-confidence ones, improving LLMs sentiment analysis accuracy by 6%.
* 21 pages, 10 Tables, 5 figures
Via

Apr 22, 2025
Abstract:The human-level performance of Large Language Models (LLMs) across various tasks has raised expectations for the potential of Artificial Intelligence (AI) to possess emotions someday. To explore the capability of current LLMs to express emotions in their outputs, we conducted an experiment using several LLMs (OpenAI GPT, Google Gemini, Meta Llama3, and Cohere Command R+) to role-play as agents answering questions with specified emotional states. We defined the emotional states using Russell's Circumplex model, a well-established framework that characterizes emotions along the sleepy-activated (arousal) and pleasure-displeasure (valence) axes. We chose this model for its simplicity, utilizing two continuous parameters, which allows for better controllability in applications involving continuous changes in emotional states. The responses generated were evaluated using a sentiment analysis model, independent of the LLMs, trained on the GoEmotions dataset. The evaluation showed that the emotional states of the generated answers were consistent with the specifications, demonstrating the LLMs' capability for emotional expression. This indicates the potential for LLM-based AI agents to simulate emotions, opening up a wide range of applications for emotion-based interactions, such as advisors or consultants who can provide advice or opinions with a personal touch.
* 14 pages, 8 figures, accepted to the Natural Language Processing for
Digital Humanities (NLP4DH) workshop at NAACL 2025
Via

May 21, 2025
Abstract:NeoN, a tool for detecting and analyzing Polish neologisms. Unlike traditional dictionary-based methods requiring extensive manual review, NeoN combines reference corpora, Polish-specific linguistic filters, an LLM-driven precision-boosting filter, and daily RSS monitoring in a multi-layered pipeline. The system uses context-aware lemmatization, frequency analysis, and orthographic normalization to extract candidate neologisms while consolidating inflectional variants. Researchers can verify candidates through an intuitive interface with visualizations and filtering controls. An integrated LLM module automatically generates definitions and categorizes neologisms by domain and sentiment. Evaluations show NeoN maintains high accuracy while significantly reducing manual effort, providing an accessible solution for tracking lexical innovation in Polish.
* 15 pages, this is an extended version of a paper accepted for the
25th International Conference on Computational Science (ICCS), 7-9 July 2025
Via

Apr 23, 2025
Abstract:Most datasets for sentiment analysis lack context in which an opinion was expressed, often crucial for emotion understanding, and are mainly limited by a few emotion categories. Foundation large language models (LLMs) like GPT-4 suffer from over-predicting emotions and are too resource-intensive. We design an LLM-based data synthesis pipeline and leverage a large model, Mistral-7b, for the generation of training examples for more accessible, lightweight BERT-type encoder models. We focus on enlarging the semantic diversity of examples and propose grounding the generation into a corpus of narratives to produce non-repetitive story-character-centered utterances with unique contexts over 28 emotion classes. By running 700K inferences in 450 GPU hours, we contribute with the dataset of 100K contextual and also 300K context-less examples to cover both scenarios. We use it for fine-tuning pre-trained encoders, which results in several Emo Pillars models. We show that Emo Pillars models are highly adaptive to new domains when tuned to specific tasks such as GoEmotions, ISEAR, IEMOCAP, and EmoContext, reaching the SOTA performance on the first three. We also validate our dataset, conducting statistical analysis and human evaluation, and confirm the success of our measures in utterance diversification (although less for the neutral class) and context personalization, while pointing out the need for improved handling of out-of-taxonomy labels within the pipeline.
Via

Apr 16, 2025
Abstract:This study explores the dynamic landscape of Technical Debt (TD) topics in software engineering by examining its evolution across time, programming languages, and repositories. Despite the extensive research on identifying and quantifying TD, there remains a significant gap in understanding the diversity of TD topics and their temporal development. To address this, we have conducted an explorative analysis of TD data extracted from GitHub issues spanning from 2015 to September 2023. We employed BERTopic for sophisticated topic modelling. This study categorises the TD topics and tracks their progression over time. Furthermore, we have incorporated sentiment analysis for each identified topic, providing a deeper insight into the perceptions and attitudes associated with these topics. This offers a more nuanced understanding of the trends and shifts in TD topics through time, programming language, and repository.
Via

Apr 18, 2025
Abstract:Knowledge distillation (KD) is a technique for transferring knowledge from complex teacher models to simpler student models, significantly enhancing model efficiency and accuracy. It has demonstrated substantial advancements in various applications including image classification, object detection, language modeling, text classification, and sentiment analysis. Recent innovations in KD methods, such as attention-based approaches, block-wise logit distillation, and decoupling distillation, have notably improved student model performance. These techniques focus on stimulus complexity, attention mechanisms, and global information capture to optimize knowledge transfer. In addition, KD has proven effective in compressing large language models while preserving accuracy, reducing computational overhead, and improving inference speed. This survey synthesizes the latest literature, highlighting key findings, contributions, and future directions in knowledge distillation to provide insights for researchers and practitioners on its evolving role in artificial intelligence and machine learning.
Via

May 21, 2025
Abstract:We present BiasLab, a dataset of 300 political news articles annotated for perceived ideological bias. These articles were selected from a curated 900-document pool covering diverse political events and source biases. Each article is labeled by crowdworkers along two independent scales, assessing sentiment toward the Democratic and Republican parties, and enriched with rationale indicators. The annotation pipeline incorporates targeted worker qualification and was refined through pilot-phase analysis. We quantify inter-annotator agreement, analyze misalignment with source-level outlet bias, and organize the resulting labels into interpretable subsets. Additionally, we simulate annotation using schema-constrained GPT-4o, enabling direct comparison to human labels and revealing mirrored asymmetries, especially in misclassifying subtly right-leaning content. We define two modeling tasks: perception drift prediction and rationale type classification, and report baseline performance to illustrate the challenge of explainable bias detection. BiasLab's rich rationale annotations provide actionable interpretations that facilitate explainable modeling of political bias, supporting the development of transparent, socially aware NLP systems. We release the dataset, annotation schema, and modeling code to encourage research on human-in-the-loop interpretability and the evaluation of explanation effectiveness in real-world settings.
* Under review
Via

Apr 22, 2025
Abstract:News data have become an essential resource across various disciplines, including economics, finance, management, social sciences, and computer science. Researchers leverage newspaper articles to study economic trends, market dynamics, corporate strategies, public perception, political discourse, and the evolution of public opinion. Additionally, news datasets have been instrumental in training large-scale language models, with applications in sentiment analysis, fake news detection, and automated news summarization. Despite their significance, access to comprehensive news corpora remains a key challenge. Many full-text news providers, such as Factiva and LexisNexis, require costly subscriptions, while free alternatives often suffer from incomplete data and transparency issues. This paper presents a novel approach to obtaining full-text newspaper articles at near-zero cost by leveraging data from the Global Database of Events, Language, and Tone (GDELT). Specifically, we focus on the GDELT Web News NGrams 3.0 dataset, which provides high-frequency updates of n-grams extracted from global online news sources. We provide Python code to reconstruct full-text articles from these n-grams by identifying overlapping textual fragments and intelligently merging them. Our method enables researchers to access structured, large-scale newspaper data for text analysis while overcoming the limitations of existing proprietary datasets. The proposed approach enhances the accessibility of news data for empirical research, facilitating applications in economic forecasting, computational social science, and natural language processing.
Via
