Text classification is the process of categorizing text documents into predefined categories or labels.




Large Language Models (LLMs) excel in many Natural Language Processing (NLP) tasks through in-context learning but often under-perform in Named Entity Recognition (NER), especially for lower-resource languages like Portuguese. While open-weight LLMs enable local deployment, no single model dominates all tasks, motivating ensemble approaches. However, existing LLM ensembles focus on text generation or classification, leaving NER under-explored. In this context, this work proposes a novel three-step ensemble pipeline for zero-shot NER using similarly capable, locally run LLMs. Our method outperforms individual LLMs in four out of five Portuguese NER datasets by leveraging a heuristic to select optimal model combinations with minimal annotated data. Moreover, we show that ensembles obtained on different source datasets generally outperform individual LLMs in cross-dataset configurations, potentially eliminating the need for annotated data for the current task. Our work advances scalable, low-resource, and zero-shot NER by effectively combining multiple small LLMs without fine-tuning. Code is available at https://github.com/Joao-Luz/local-llm-ner-ensemble.
Alzheimer's Disease (AD) is a progressive neurodegenerative condition that adversely affects cognitive abilities. Language-related changes can be automatically identified through the analysis of outputs from linguistic assessment tasks, such as picture description. Language models show promise as a basis for screening tools for AD, but their limited interpretability poses a challenge in distinguishing true linguistic markers of cognitive decline from surface-level textual patterns. To address this issue, we examine how surface form variation affects classification performance, with the goal of assessing the ability of language models to represent underlying semantic indicators. We introduce a novel approach where texts surface forms are transformed by altering syntax and vocabulary while preserving semantic content. The transformations significantly modify the structure and lexical content, as indicated by low BLEU and chrF scores, yet retain the underlying semantics, as reflected in high semantic similarity scores, isolating the effect of semantic information, and finding models perform similarly to if they were using the original text, with only small deviations in macro-F1. We also investigate whether language from picture descriptions retains enough detail to reconstruct the original image using generative models. We found that image-based transformations add substantial noise reducing classification accuracy. Our methodology provides a novel way of looking at what features influence model predictions, and allows the removal of possible spurious correlations. We find that just using semantic information, language model based classifiers can still detect AD. This work shows that difficult to detect semantic impairment can be identified, addressing an overlooked feature of linguistic deterioration, and opening new pathways for early detection systems.
Accurate and reliable probability predictions are essential for multi-class supervised learning tasks, where well-calibrated models enable rational decision-making. While isotonic regression has proven effective for binary calibration, its extension to multi-class problems via one-vs-rest calibration produced suboptimal results when compared to parametric methods, limiting its practical adoption. In this work, we propose novel isotonic normalization-aware techniques for multiclass calibration, grounded in natural and intuitive assumptions expected by practitioners. Unlike prior approaches, our methods inherently account for probability normalization by either incorporating normalization directly into the optimization process (NA-FIR) or modeling the problem as a cumulative bivariate isotonic regression (SCIR). Empirical evaluation on a variety of text and image classification datasets across different model architectures reveals that our approach consistently improves negative log-likelihood (NLL) and expected calibration error (ECE) metrics.




Large language model (LLM) activations are notoriously difficult to understand, with most existing techniques using complex, specialized methods for interpreting them. Recent work has proposed a simpler approach known as LatentQA: training LLMs to directly accept LLM activations as inputs and answer arbitrary questions about them in natural language. However, prior work has focused on narrow task settings for both training and evaluation. In this paper, we instead take a generalist perspective. We evaluate LatentQA-trained models, which we call Activation Oracles (AOs), in far out-of-distribution settings and examine how performance scales with training data diversity. We find that AOs can recover information fine-tuned into a model (e.g., biographical knowledge or malign propensities) that does not appear in the input text, despite never being trained with activations from a fine-tuned model. Our main evaluations are four downstream tasks where we can compare to prior white- and black-box techniques. We find that even narrowly-trained LatentQA models can generalize well, and that adding additional training datasets (such as classification tasks and a self-supervised context prediction task) yields consistent further improvements. Overall, our best AOs match or exceed prior white-box baselines on all four tasks and are the best method on 3 out of 4. These results suggest that diversified training to answer natural-language queries imparts a general capability to verbalize information about LLM activations.
LLMs are highly sensitive to prompt design, but handcrafting effective prompts is difficult and often requires intricate crafting of few-shot examples. We propose a fast automatic prompt construction algorithm that augments human instructions by generating a small set of few shot examples. Our method iteratively replaces/drops/keeps few-shot examples using Monte Carlo Shapley estimation of example utility. For faster execution, we use aggressive subsampling and a replay buffer for faster evaluations. Our method can be run using different compute time budgets. On a limited budget, we outperform existing automatic prompting methods on text simplification and GSM8K and obtain second best results on classification and summarization. With an extended, but still modest compute budget we set a new state of the art among automatic prompting methods on classification, simplification and GSM8K. Our results show that carefully constructed examples, rather than exhaustive instruction search, are the dominant lever for fast and data efficient prompt engineering. Our code is available at https://github.com/Batorskq/PIAST.




The development of clinical-grade artificial intelligence in pathology is limited by the scarcity of diverse, high-quality annotated datasets. Generative models offer a potential solution but suffer from semantic instability and morphological hallucinations that compromise diagnostic reliability. To address this challenge, we introduce a Correlation-Regulated Alignment Framework for Tissue Synthesis (CRAFTS), the first generative foundation model for pathology-specific text-to-image synthesis. By leveraging a dual-stage training strategy on approximately 2.8 million image-caption pairs, CRAFTS incorporates a novel alignment mechanism that suppresses semantic drift to ensure biological accuracy. This model generates diverse pathological images spanning 30 cancer types, with quality rigorously validated by objective metrics and pathologist evaluations. Furthermore, CRAFTS-augmented datasets enhance the performance across various clinical tasks, including classification, cross-modal retrieval, self-supervised learning, and visual question answering. In addition, coupling CRAFTS with ControlNet enables precise control over tissue architecture from inputs such as nuclear segmentation masks and fluorescence images. By overcoming the critical barriers of data scarcity and privacy concerns, CRAFTS provides a limitless source of diverse, annotated histology data, effectively unlocking the creation of robust diagnostic tools for rare and complex cancer phenotypes.
Medical image classifiers detect gastrointestinal diseases well, but they do not explain their decisions. Large language models can generate clinical text, yet they struggle with visual reasoning and often produce unstable or incorrect explanations. This leaves a gap between what a model sees and the type of reasoning a clinician expects. We introduce a framework that links image classification with structured clinical reasoning. A new hybrid model, MobileCoAtNet, is designed for endoscopic images and achieves high accuracy across eight stomach-related classes. Its outputs are then used to drive reasoning by several LLMs. To judge this reasoning, we build two expert-verified benchmarks covering causes, symptoms, treatment, lifestyle, and follow-up care. Thirty-two LLMs are evaluated against these gold standards. Strong classification improves the quality of their explanations, but none of the models reach human-level stability. Even the best LLMs change their reasoning when prompts vary. Our study shows that combining DL with LLMs can produce useful clinical narratives, but current LLMs remain unreliable for high-stakes medical decisions. The framework provides a clearer view of their limits and a path for building safer reasoning systems. The complete source code and datasets used in this study are available at https://github.com/souravbasakshuvo/DL3M.




Pretrained models like CLIP have demonstrated impressive zero-shot classification capabilities across diverse visual domains, spanning natural images, artistic renderings, and abstract representations. However, real-world applications often demand the removal (or "unlearning") of specific object classes without requiring additional data or retraining, or affecting the model's performance on unrelated tasks. In this paper, we propose a novel training- and data-free unlearning framework that enables three distinct forgetting paradigms: (1) global unlearning of selected objects across all domains, (2) domain-specific knowledge removal (e.g., eliminating sketch representations while preserving photo recognition), and (3) complete unlearning in selective domains. By leveraging a multimodal nullspace through synergistic integration of text prompts and synthesized visual prototypes derived from CLIP's joint embedding space, our method efficiently removes undesired class information while preserving the remaining knowledge. This approach overcomes the limitations of existing retraining-based methods and offers a flexible and computationally efficient solution for controlled model forgetting.
The representation of graphs is commonly based on the adjacency matrix concept. This formulation is the foundation of most algebraic and computational approaches to graph processing. The advent of deep learning language models offers a wide range of powerful computational models that are specialized in the processing of text. However, current procedures to represent graphs are not amenable to processing by these models. In this work, a new method to represent graphs is proposed. It represents the adjacency matrix of a graph by a string of simple instructions. The instructions build the adjacency matrix step by step. The transformation is reversible, i.e., given a graph the string can be produced and vice versa. The proposed representation is compact, and it maintains the local structural patterns of the graph. Therefore, it is envisaged that it could be useful to boost the processing of graphs by deep learning models. A tentative computational experiment is reported, demonstrating improved classification performance and faster computation times with the proposed representation.
This paper presents a simple method that allows to easily enhance textual pre-trained large language models with speech information, when fine-tuned for a specific classification task. A classical issue with the fusion of many embeddings from audio with text is the large length of the audio sequence compared to the text one. Our method benefits from an existing speech tokenizer trained for Audio Speech Recognition that output long sequences of tokens from a large vocabulary, making it difficult to integrate it at low cost in a large language model. By applying a simple lasso-based feature selection on multimodal Bag-of-Words representation, we retain only the most important audio tokens for the task, and adapt the language model to them with a self-supervised language modeling objective, before fine-tuning it on the downstream task. We show this helps to improve the performances compared to an unimodal model, to a bigger SpeechLM or to integrating audio via a learned representation. We show the effectiveness of our method on two recent Argumentative Fallacy Detection and Classification tasks where the use of audio was believed counterproductive, reaching state-of-the-art results. We also provide an in-depth analysis of the method, showing that even a random audio token selection helps enhancing the unimodal model. Our code is available [online](https://github.com/salocinc/EACL26SpeechTokFallacy/).