Text classification is the process of categorizing text documents into predefined categories or labels.




Developing a good speaker embedding has received tremendous interest in the speech community, with representations such as i-vector and d-vector demonstrating remarkable performance across various tasks. Despite their widespread adoption, a fundamental question remains largely unexplored: what properties are actually encoded in these embeddings? To address this gap, we conduct a comprehensive analysis of three prominent speaker embedding methods: i-vector, d-vector, and RNN/LSTM-based sequence-vector (s-vector). Through carefully designed classification tasks, we systematically investigate their encoding capabilities across multiple dimensions, including speaker identity, gender, speaking rate, text content, word order, and channel information. Our analysis reveals distinct strengths and limitations of each embedding type: i-vector excels at speaker discrimination but encodes limited sequential information; s-vector captures text content and word order effectively but struggles with speaker identity; d-vector shows balanced performance but loses sequential information through averaging. Based on these insights, we propose a novel multi-task learning framework that integrates i-vector and s-vector, resulting in a new speaker embedding (i-s-vector) that combines their complementary advantages. Experimental results on RSR2015 demonstrate that the proposed i-s-vector achieves more than 50% EER reduction compared to the i-vector baseline on content mismatch trials, validating the effectiveness of our approach.




Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.
Early detection of Alzheimer's disease (AD) requires models capable of integrating macro-scale neuroanatomical alterations with micro-scale genetic susceptibility, yet existing multimodal approaches struggle to align these heterogeneous signals. We introduce R-GenIMA, an interpretable multimodal large language model that couples a novel ROI-wise vision transformer with genetic prompting to jointly model structural MRI and single nucleotide polymorphisms (SNPs) variations. By representing each anatomically parcellated brain region as a visual token and encoding SNP profiles as structured text, the framework enables cross-modal attention that links regional atrophy patterns to underlying genetic factors. Applied to the ADNI cohort, R-GenIMA achieves state-of-the-art performance in four-way classification across normal cognition (NC), subjective memory concerns (SMC), mild cognitive impairment (MCI), and AD. Beyond predictive accuracy, the model yields biologically meaningful explanations by identifying stage-specific brain regions and gene signatures, as well as coherent ROI-Gene association patterns across the disease continuum. Attention-based attribution revealed genes consistently enriched for established GWAS-supported AD risk loci, including APOE, BIN1, CLU, and RBFOX1. Stage-resolved neuroanatomical signatures identified shared vulnerability hubs across disease stages alongside stage-specific patterns: striatal involvement in subjective decline, frontotemporal engagement during prodromal impairment, and consolidated multimodal network disruption in AD. These results demonstrate that interpretable multimodal AI can synthesize imaging and genetics to reveal mechanistic insights, providing a foundation for clinically deployable tools that enable earlier risk stratification and inform precision therapeutic strategies in Alzheimer's disease.
In this study, we propose a structured methodology that utilizes large language models (LLMs) in a cost-efficient and parsimonious manner, integrating the strengths of scholars and machines while offsetting their respective weaknesses. Our methodology, facilitated through a chain of thought and few-shot learning prompting from computer science, extends best practices for co-author teams in qualitative research to human-machine teams in quantitative research. This allows humans to utilize abductive reasoning and natural language to interrogate not just what the machine has done but also what the human has done. Our method highlights how scholars can manage inherent weaknesses OF LLMs using careful, low-cost techniques. We demonstrate how to use the methodology to interrogate human-machine rating discrepancies for a sample of 1,934 press releases announcing pharmaceutical alliances (1990-2017).




In recent years, the demand of image compression models for machine vision has increased dramatically. However, the training frameworks of image compression still focus on the vision of human, maintaining the excessive perceptual details, thus have limitations in optimally reducing the bits per pixel in the case of performing machine vision tasks. In this paper, we propose Semantic-based Low-bitrate Image compression for Machines by leveraging diffusion, termed SLIM. This is a new effective training framework of image compression for machine vision, using a pretrained latent diffusion model.The compressor model of our method focuses only on the Region-of-Interest (RoI) areas for machine vision in the image latent, to compress it compactly. Then the pretrained Unet model enhances the decompressed latent, utilizing a RoI-focused text caption which containing semantic information of the image. Therefore, SLIM is able to focus on RoI areas of the image without any guide mask at the inference stage, achieving low bitrate when compressing. And SLIM is also able to enhance a decompressed latent by denoising steps, so the final reconstructed image from the enhanced latent can be optimized for the machine vision task while still containing perceptual details for human vision. Experimental results show that SLIM achieves a higher classification accuracy in the same bits per pixel condition, compared to conventional image compression models for machines.
Indonesian, spoken by over 200 million people, remains underserved in multimodal emotion recognition research despite its dominant presence on Southeast Asian social media platforms. We introduce IndoMER, the first multimodal emotion recognition benchmark for Indonesian, comprising 1,944 video segments from 203 speakers with temporally aligned text, audio, and visual annotations across seven emotion categories. The dataset exhibits realistic challenges including cross-modal inconsistency and long-tailed class distributions shaped by Indonesian cultural communication norms. To address these challenges, we propose OmniMER, a multimodal adaptation framework built upon Qwen2.5-Omni that enhances emotion recognition through three auxiliary modality-specific perception tasks: emotion keyword extraction for text, facial expression analysis for video, and prosody analysis for audio. These auxiliary tasks help the model identify emotion-relevant cues in each modality before fusion, reducing reliance on spurious correlations in low-resource settings. Experiments on IndoMER show that OmniMER achieves 0.582 Macro-F1 on sentiment classification and 0.454 on emotion recognition, outperforming the base model by 7.6 and 22.1 absolute points respectively. Cross-lingual evaluation on the Chinese CH-SIMS dataset further demonstrates the generalizability of the proposed framework. The dataset and code are publicly available. https://github.com/yanxm01/INDOMER




In legal matters, text classification models are most often used to filter through large datasets in search of documents that meet certain pre-selected criteria like relevance to a certain subject matter, such as legally privileged communications and attorney-directed documents. In this context, large language models have demonstrated strong performance. This paper presents an empirical study investigating the role of randomness in LLM-based classification for attorney-client privileged document detection, focusing on four key dimensions: (1) the effectiveness of LLMs in identifying legally privileged documents, (2) the influence of randomness control parameters on classification outputs, (3) their impact on overall classification performance, and (4) a methodology for leveraging randomness to enhance accuracy. Experimental results showed that LLMs can identify privileged documents effectively, randomness control parameters have minimal impact on classification performance, and importantly, our developed methodology for leveraging randomness can have a significant impact on improving accuracy. Notably, this methodology that leverages randomness could also enhance a corporation's confidence in an LLM's output when incorporated into its sanctions-compliance processes. As organizations increasingly rely on LLMs to augment compliance workflows, reducing output variability helps build internal and regulatory confidence in LLM-derived sanctions-screening decisions.
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.
Echocardiography is the most widely used imaging modality in cardiology, yet its interpretation remains labor-intensive and inherently multimodal, requiring view recognition, quantitative measurements, qualitative assessments, and guideline-based reasoning. While recent vision-language models (VLMs) have achieved broad success in natural images and certain medical domains, their potential in echocardiography has been limited by the lack of large-scale, clinically grounded image-text datasets and the absence of measurement-based reasoning central to echo interpretation. We introduce EchoGround-MIMIC, the first measurement-grounded multimodal echocardiography dataset, comprising 19,065 image-text pairs from 1,572 patients with standardized views, structured measurements, measurement-grounded captions, and guideline-derived disease labels. Building on this resource, we propose EchoVLM, a vision-language model that incorporates two novel pretraining objectives: (i) a view-informed contrastive loss that encodes the view-dependent structure of echocardiographic imaging, and (ii) a negation-aware contrastive loss that distinguishes clinically critical negative from positive findings. Across five types of clinical applications with 36 tasks spanning multimodal disease classification, image-text retrieval, view classification, chamber segmentation, and landmark detection, EchoVLM achieves state-of-the-art performance (86.5% AUC in zero-shot disease classification and 95.1% accuracy in view classification). We demonstrate that clinically grounded multimodal pretraining yields transferable visual representations and establish EchoVLM as a foundation model for end-to-end echocardiography interpretation. We will release EchoGround-MIMIC and the data curation code, enabling reproducibility and further research in multimodal echocardiography interpretation.




This document reports the sequence of practices and methodologies implemented during the Big Data course. It details the workflow beginning with the processing of the Epsilon dataset through group and individual strategies, followed by text analysis and classification with RestMex and movie feature analysis with IMDb. Finally, it describes the technical implementation of a distributed computing cluster with Apache Spark on Linux using Scala.