What is Anomaly Detection? Anomaly detection is the process of identifying unexpected items or events in data sets, which differ from the norm.
Papers and Code
May 20, 2025
Abstract:Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-Augmented Generation-based framework that automates anomaly detection across various Additive Manufacturing processes leveraging retrieved information from literature, including images and descriptive text, rather than training datasets. This framework integrates text and image retrieval from scientific literature and multimodal generation models to perform zero-shot anomaly identification, classification, and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes, models, and materials. This evaluation demonstrates the framework's adaptability and generalizability across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and GPT-4o-mini as MLLM within the proposed framework highlights that GPT-4o-mini outperforms Qwen2-VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy by 12% by reducing the risk of hallucination and providing additional information. The proposed framework can be continuously updated by integrating emerging research, allowing seamless adaptation to the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework streamlines AM anomaly analysis, enhancing efficiency and accuracy.
* ASME 2025 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference IDETC/CIE2025, August
17-20, 2025, Anaheim, CA (IDETC2025-168615)
Via

May 25, 2025
Abstract:This paper addresses performance degradation in anomalous sound detection (ASD) when neither sufficiently similar machine data nor operational state labels are available. We present an integrated pipeline that combines three complementary components derived from prior work and extends them to the unlabeled ASD setting. First, we adapt an anomaly score based selector to curate external audio data resembling the normal sounds of the target machine. Second, we utilize triplet learning to assign pseudo-labels to unlabeled data, enabling finer classification of operational sounds and detection of subtle anomalies. Third, we employ iterative training to refine both the pseudo-anomalous set selection and pseudo-label assignment, progressively improving detection accuracy. Experiments on the DCASE2022-2024 Task 2 datasets demonstrate that, in unlabeled settings, our approach achieves an average AUC increase of over 6.6 points compared to conventional methods. In labeled settings, incorporating external data from the pseudo-anomalous set further boosts performance. These results highlight the practicality and robustness of our methods in scenarios with scarce machine data and labels, facilitating ASD deployment across diverse industrial settings with minimal annotation effort.
* 33 pages, 3 figures, 7 tables, APSIPA Transactions on Signal and
Information Processing
Via

May 16, 2025
Abstract:We focus on the problem of identifying samples in a set that do not conform to structured patterns represented by low-dimensional manifolds. An effective way to solve this problem is to embed data in a high dimensional space, called Preference Space, where anomalies can be identified as the most isolated points. In this work, we employ Locality Sensitive Hashing to avoid explicit computation of distances in high dimensions and thus improve Anomaly Detection efficiency. Specifically, we present an isolation-based anomaly detection technique designed to work in the Preference Space which achieves state-of-the-art performance at a lower computational cost. Code is publicly available at https://github.com/ineveLoppiliF/Hashing-for-Structure-based-Anomaly-Detection.
* Accepted at International Conference on Image Analysis and Processing
(ICIAP 2023)
Via

May 23, 2025
Abstract:Transformer-based models have shown strong performance across diverse time-series tasks, but their deployment on resource-constrained devices remains challenging due to high memory and computational demand. While prior work targeting Microcontroller Units (MCUs) has explored hardware-specific optimizations, such approaches are often task-specific and limited to 8-bit fixed-point precision. Field-Programmable Gate Arrays (FPGAs) offer greater flexibility, enabling fine-grained control over data precision and architecture. However, existing FPGA-based deployments of Transformers for time-series analysis typically focus on high-density platforms with manual configuration. This paper presents a unified and fully automated deployment framework for Tiny Transformers on embedded FPGAs. Our framework supports a compact encoder-only Transformer architecture across three representative time-series tasks (forecasting, classification, and anomaly detection). It combines quantization-aware training (down to 4 bits), hardware-aware hyperparameter search using Optuna, and automatic VHDL generation for seamless deployment. We evaluate our framework on six public datasets across two embedded FPGA platforms. Results show that our framework produces integer-only, task-specific Transformer accelerators achieving as low as 0.033 mJ per inference with millisecond latency on AMD Spartan-7, while also providing insights into deployment feasibility on Lattice iCE40. All source code will be released in the GitHub repository (https://github.com/Edwina1030/TinyTransformer4TS).
* 6 pages, 5 figures, 1 table, accepted by IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2025)
Via

May 15, 2025
Abstract:We address the problem of detecting anomalies with respect to structured patterns. To this end, we conceive a novel anomaly detection method called PIF, that combines the advantages of adaptive isolation methods with the flexibility of preference embedding. Specifically, we propose to embed the data in a high dimensional space where an efficient tree-based method, PI-Forest, is employed to compute an anomaly score. Experiments on synthetic and real datasets demonstrate that PIF favorably compares with state-of-the-art anomaly detection techniques, and confirm that PI-Forest is better at measuring arbitrary distances and isolate points in the preference space.
* Accepted at International Conference on Pattern Recognition (ICPR
2020)
Via

May 19, 2025
Abstract:Weakly-supervised methods for video anomaly detection (VAD) are conventionally based merely on RGB spatio-temporal features, which continues to limit their reliability in real-world scenarios. This is due to the fact that RGB-features are not sufficiently distinctive in setting apart categories such as shoplifting from visually similar events. Therefore, towards robust complex real-world VAD, it is essential to augment RGB spatio-temporal features by additional modalities. Motivated by this, we introduce the Poly-modal Induced framework for VAD: "PI-VAD", a novel approach that augments RGB representations by five additional modalities. Specifically, the modalities include sensitivity to fine-grained motion (Pose), three dimensional scene and entity representation (Depth), surrounding objects (Panoptic masks), global motion (optical flow), as well as language cues (VLM). Each modality represents an axis of a polygon, streamlined to add salient cues to RGB. PI-VAD includes two plug-in modules, namely Pseudo-modality Generation module and Cross Modal Induction module, which generate modality-specific prototypical representation and, thereby, induce multi-modal information into RGB cues. These modules operate by performing anomaly-aware auxiliary tasks and necessitate five modality backbones -- only during training. Notably, PI-VAD achieves state-of-the-art accuracy on three prominent VAD datasets encompassing real-world scenarios, without requiring the computational overhead of five modality backbones at inference.
Via

May 16, 2025
Abstract:Unsupervised anomaly detection is a critical task in many high-social-impact applications such as finance, healthcare, social media, and cybersecurity, where demographics involving age, gender, race, disease, etc, are used frequently. In these scenarios, possible bias from anomaly detection systems can lead to unfair treatment for different groups and even exacerbate social bias. In this work, first, we thoroughly analyze the feasibility and necessary assumptions for ensuring group fairness in unsupervised anomaly detection. Second, we propose a novel fairness-aware anomaly detection method FairAD. From the normal training data, FairAD learns a projection to map data of different demographic groups to a common target distribution that is simple and compact, and hence provides a reliable base to estimate the density of the data. The density can be directly used to identify anomalies while the common target distribution ensures fairness between different groups. Furthermore, we propose a threshold-free fairness metric that provides a global view for model's fairness, eliminating dependence on manual threshold selection. Experiments on real-world benchmarks demonstrate that our method achieves an improved trade-off between detection accuracy and fairness under both balanced and skewed data across different groups.
Via

May 16, 2025
Abstract:We address the problem of detecting anomalies as samples that do not conform to structured patterns represented by low-dimensional manifolds. To this end, we conceive a general anomaly detection framework called Preference Isolation Forest (PIF), that combines the benefits of adaptive isolation-based methods with the flexibility of preference embedding. The key intuition is to embed the data into a high-dimensional preference space by fitting low-dimensional manifolds, and to identify anomalies as isolated points. We propose three isolation approaches to identify anomalies: $i$) Voronoi-iForest, the most general solution, $ii$) RuzHash-iForest, that avoids explicit computation of distances via Local Sensitive Hashing, and $iii$) Sliding-PIF, that leverages a locality prior to improve efficiency and effectiveness.
* Submitted to Pattern Recognition
Via

May 21, 2025
Abstract:Neuromorphic computing, inspired by the human brain's neural architecture, is revolutionizing artificial intelligence and edge computing with its low-power, adaptive, and event-driven designs. However, these unique characteristics introduce novel cybersecurity risks. This paper proposes Neuromorphic Mimicry Attacks (NMAs), a groundbreaking class of threats that exploit the probabilistic and non-deterministic nature of neuromorphic chips to execute covert intrusions. By mimicking legitimate neural activity through techniques such as synaptic weight tampering and sensory input poisoning, NMAs evade traditional intrusion detection systems, posing risks to applications such as autonomous vehicles, smart medical implants, and IoT networks. This research develops a theoretical framework for NMAs, evaluates their impact using a simulated neuromorphic chip dataset, and proposes countermeasures, including neural-specific anomaly detection and secure synaptic learning protocols. The findings underscore the critical need for tailored cybersecurity measures to protect brain-inspired computing, offering a pioneering exploration of this emerging threat landscape.
Via

May 16, 2025
Abstract:Quantum computing may offer new approaches for advancing machine learning, including in complex tasks such as anomaly detection in network traffic. In this paper, we introduce a quantum generative adversarial network (QGAN) architecture for multivariate time-series anomaly detection that leverages variational quantum circuits (VQCs) in combination with a time-window shifting technique, data re-uploading, and successive data injection (SuDaI). The method encodes multivariate time series data as rotation angles. By integrating both data re-uploading and SuDaI, the approach maps classical data into quantum states efficiently, helping to address hardware limitations such as the restricted number of available qubits. In addition, the approach employs an anomaly scoring technique that utilizes both the generator and the discriminator output to enhance the accuracy of anomaly detection. The QGAN was trained using the parameter shift rule and benchmarked against a classical GAN. Experimental results indicate that the quantum model achieves a accuracy high along with high recall and F1-scores in anomaly detection, and attains a lower MSE compared to the classical model. Notably, the QGAN accomplishes this performance with only 80 parameters, demonstrating competitive results with a compact architecture. Tests using a noisy simulator suggest that the approach remains effective under realistic noise-prone conditions.
Via
