Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
AI agents have recently shown significant promise in software engineering. Much public attention has been transfixed on the topic of code generation from Large Language Models (LLMs) via a prompt. However, software engineering is much more than programming, and AI agents go far beyond instructions given by a prompt. At the code level, common software tasks include code generation, testing, and program repair. Design level software tasks may include architecture exploration, requirements understanding, and requirements enforcement at the code level. Each of these software tasks involves micro-decisions which can be taken autonomously by an AI agent, aided by program analysis tools. This creates the vision of an AI software engineer, where the AI agent can be seen as a member of a development team. Conceptually, the key to successfully developing trustworthy agentic AI-based software workflows will be to resolve the core difficulty in software engineering - the deciphering and clarification of developer intent. Specification inference, or deciphering the intent, thus lies at the heart of many software tasks, including software maintenance and program repair. A successful deployment of agentic technology into software engineering would involve making conceptual progress in such intent inference via agents. Trusting the AI agent becomes a key aspect, as software engineering becomes more automated. Higher automation also leads to higher volume of code being automatically generated, and then integrated into code-bases. Thus to deal with this explosion, an emerging direction is AI-based verification and validation (V & V) of AI generated code. We posit that agentic software workflows in future will include such AIbased V&V.
Given recent breakthroughs in Generative Artificial Intelligence (GAI) and Large Language Models (LLMs), more and more professional services are being augmented through Artificial Intelligence (AI), which once seemed impossible to automate. This paper presents a modular model for leveraging GAI in developing strategic plans for large scale government organizations and evaluates leading machine learning techniques in their application towards one of the identified modules. Specifically, the performance of BERTopic and Non-negative Matrix Factorization (NMF) are evaluated in their ability to use topic modeling to generate themes representative of Vision Elements within a strategic plan. To accomplish this, BERTopic and NMF models are trained using a large volume of reports from the Government Accountability Office (GAO). The generated topics from each model are then scored for similarity against the Vision Elements of a published strategic plan and the results are compared. Our results show that these techniques are capable of generating themes similar to 100% of the elements being evaluated against. Further, we conclude that BERTopic performs best in this application with more than half of its correlated topics achieving a "medium" or "strong" correlation. A capability of GAI-enabled strategic plan development impacts a multi-billion dollar industry and assists the federal government in overcoming regulatory requirements which are crucial to the public good. Further work will focus on the operationalization of the concept proven in this study as well as viability of the remaining modules in the proposed model for GAI-generated strategic plans.
AI Alignment, primarily in the form of Reinforcement Learning from Human Feedback (RLHF), has been a cornerstone of the post-training phase in developing Large Language Models (LLMs). It has also been a popular research topic across various disciplines beyond Computer Science, including Philosophy and Law, among others, highlighting the socio-technical challenges involved. Nonetheless, except for the computational techniques related to alignment, there has been limited focus on the broader picture: the scope of these processes, which primarily rely on the selected objectives (values), and the data collected and used to imprint such objectives into the models. This work aims to reveal how alignment is understood and applied in practice from a value-setting and data-centric perspective. For this purpose, we investigate and survey (`audit') publicly available documentation released by 6 LLM development initiatives by 5 leading organizations shaping this technology, focusing on proprietary (OpenAI's GPT, Anthropic's Claude, Google's Gemini) and open-weight (Meta's Llama, Google's Gemma, and Alibaba's Qwen) initiatives, all published in the last 3 years. The findings are documented in detail per initiative, while there is also an overall summary concerning different aspects, mainly from a value-setting and data-centric perspective. On the basis of our findings, we discuss a series of broader related concerns.
Word clouds are a common way to summarize qualitative interviews, yet traditional frequency-based methods often fail in conversational contexts: they surface filler words, ignore paraphrase, and fragment semantically related ideas. This limits their usefulness in early-stage analysis, when researchers need fast, interpretable overviews of what participant actually said. We introduce ThemeClouds, an open-source visualization tool that uses large language models (LLMs) to generate thematic, participant-weighted word clouds from dialogue transcripts. The system prompts an LLM to identify concept-level themes across a corpus and then counts how many unique participants mention each topic, yielding a visualization grounded in breadth of mention rather than raw term frequency. Researchers can customize prompts and visualization parameters, providing transparency and control. Using interviews from a user study comparing five recording-device configurations (31 participants; 155 transcripts, Whisper ASR), our approach surfaces more actionable device concerns than frequency clouds and topic-modeling baselines (e.g., LDA, BERTopic). We discuss design trade-offs for integrating LLM assistance into qualitative workflows, implications for interpretability and researcher agency, and opportunities for interactive analyses such as per-condition contrasts (``diff clouds'').
Digital Humanities (DH) is an interdisciplinary field that integrates computational methods with humanities scholarship to investigate innovative topics. Each academic discipline follows a unique developmental path shaped by the topics researchers investigate and the methods they employ. With the help of bibliometric analysis, most of previous studies have examined DH across multiple dimensions such as research hotspots, co-author networks, and institutional rankings. However, these studies have often been limited in their ability to provide deep insights into the current state of technological advancements and topic development in DH. As a result, their conclusions tend to remain superficial or lack interpretability in understanding how methods and topics interrelate in the field. To address this gap, this study introduced a new concept of Topic-Method Composition (TMC), which refers to a hybrid knowledge structure generated by the co-occurrence of specific research topics and the corresponding method. Especially by analyzing the interaction between TMCs, we can see more clearly the intersection and integration of digital technology and humanistic subjects in DH. Moreover, this study developed a TMC-based workflow combining bibliometric analysis, topic modeling, and network analysis to analyze the development characteristics and patterns of research disciplines. By applying this workflow to large-scale bibliometric data, it enables a detailed view of the knowledge structures, providing a tool adaptable to other fields.
Quantitative Discourse Analysis has seen growing adoption with the rise of Large Language Models and computational tools. However, reliance on black box software such as MAXQDA and NVivo risks undermining methodological transparency and alignment with research goals. This paper presents a hybrid, transparent framework for QDA that combines lexical and semantic methods to enable triangulation, reproducibility, and interpretability. Drawing from a case study in historical political discourse, we demonstrate how custom Python pipelines using NLTK, spaCy, and Sentence Transformers allow fine-grained control over preprocessing, lemmatisation, and embedding generation. We further detail our iterative BERTopic modelling process, incorporating UMAP dimensionality reduction, HDBSCAN clustering, and c-TF-IDF keyword extraction, optimised through parameter tuning and multiple runs to enhance topic coherence and coverage. By juxtaposing precise lexical searches with context-aware semantic clustering, we argue for a multi-layered approach that mitigates the limitations of either method in isolation. Our workflow underscores the importance of code-level transparency, researcher agency, and methodological triangulation in computational discourse studies. Code and supplementary materials are available via GitHub.
\Abstract{In the realm of education, student evaluation holds equal significance as imparting knowledge. To be evaluated, students usually need to go through text-based academic assessment methods. Instructors need to make diverse sets of questions that need to be fair for all students to prove their adequacy over a particular topic. This can prove to be quite challenging as they may need to manually go through several different lecture materials. Our objective is to make this whole process much easier by implementing Automatic Question Answer Generation /(AQAG), using fine-tuned generative LLM. For tailoring the instructor's preferred question style (MCQ, conceptual, or factual questions), prompt Engineering (PE) is being utilized. In this research, we propose to leverage unsupervised learning methods in NLP, primarily focusing on the English language. This approach empowers the base Meta-Llama 2-7B model to integrate RACE dataset as training data for the fine-tuning process. Creating a customized model that will offer efficient solutions for educators, instructors, and individuals engaged in text-based evaluations. A reliable and efficient tool for generating questions and answers can free up valuable time and resources, thus streamlining their evaluation processes.}
In reinforcement learning with human feedback (RLHF), reward models can efficiently learn and amplify latent biases within multimodal datasets, which can lead to imperfect policy optimization through flawed reward signals and decreased fairness. Bias mitigation studies have often applied passive constraints, which can fail under causal confounding. Here, we present a counterfactual reward model that introduces causal inference with multimodal representation learning to provide an unsupervised, bias-resilient reward signal. The heart of our contribution is the Counterfactual Trust Score, an aggregated score consisting of four components: (1) counterfactual shifts that decompose political framing bias from topical bias; (2) reconstruction uncertainty during counterfactual perturbations; (3) demonstrable violations of fairness rules for each protected attribute; and (4) temporal reward shifts aligned with dynamic trust measures. We evaluated the framework on a multimodal fake versus true news dataset, which exhibits framing bias, class imbalance, and distributional drift. Following methodologies similar to unsupervised drift detection from representation-based distances [1] and temporal robustness benchmarking in language models [2], we also inject synthetic bias across sequential batches to test robustness. The resulting system achieved an accuracy of 89.12% in fake news detection, outperforming the baseline reward models. More importantly, it reduced spurious correlations and unfair reinforcement signals. This pipeline outlines a robust and interpretable approach to fairness-aware RLHF, offering tunable bias reduction thresholds and increasing reliability in dynamic real-time policy making.
In this study, we examine the Federal Reserve's communication strategies during the COVID-19 pandemic, comparing them with communication during previous periods of economic stress. Using specialized dictionaries tailored to COVID-19, unconventional monetary policy (UMP), and financial stability, combined with sentiment analysis and topic modeling techniques, we identify a distinct focus in Fed communication during the pandemic on financial stability, market volatility, social welfare, and UMP, characterized by notable contextual uncertainty. Through comparative analysis, we juxtapose the Fed's communication during the COVID-19 crisis with its responses during the dot-com and global financial crises, examining content, sentiment, and timing dimensions. Our findings reveal that Fed communication and policy actions were more reactive to the COVID-19 crisis than to previous crises. Additionally, declining sentiment related to financial stability in interest rate announcements and minutes anticipated subsequent accommodative monetary policy decisions. We further document that communicating about UMP has become the "new normal" for the Fed's Federal Open Market Committee meeting minutes and Chairman's speeches since the Global Financial Crisis, reflecting an institutional adaptation in communication strategy following periods of economic distress. These findings contribute to our understanding of how central bank communication evolves during crises and how communication strategies adapt to exceptional economic circumstances.
Benchmarks shape progress in AI research. A useful benchmark should be both difficult and realistic: questions should challenge frontier models while also reflecting real-world usage. Yet, current paradigms face a difficulty-realism tension: exam-style benchmarks are often made artificially difficult with limited real-world value, while benchmarks based on real user interaction often skew toward easy, high-frequency problems. In this work, we explore a radically different paradigm: assessing models on unsolved questions. Rather than a static benchmark scored once, we curate unsolved questions and evaluate models asynchronously over time with validator-assisted screening and community verification. We introduce UQ, a testbed of 500 challenging, diverse questions sourced from Stack Exchange, spanning topics from CS theory and math to sci-fi and history, probing capabilities including reasoning, factuality, and browsing. UQ is difficult and realistic by construction: unsolved questions are often hard and naturally arise when humans seek answers, thus solving them yields direct real-world value. Our contributions are threefold: (1) UQ-Dataset and its collection pipeline combining rule-based filters, LLM judges, and human review to ensure question quality (e.g., well-defined and difficult); (2) UQ-Validators, compound validation strategies that leverage the generator-validator gap to provide evaluation signals and pre-screen candidate solutions for human review; and (3) UQ-Platform, an open platform where experts collectively verify questions and solutions. The top model passes UQ-validation on only 15% of questions, and preliminary human verification has already identified correct answers among those that passed. UQ charts a path for evaluating frontier models on real-world, open-ended challenges, where success pushes the frontier of human knowledge. We release UQ at https://uq.stanford.edu.