Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.




This paper proposes a topic modeling method that scales linearly to billions of documents. We make three core contributions: i) we present a topic modeling method, Tensor Latent Dirichlet Allocation (TLDA), that has identifiable and recoverable parameter guarantees and sample complexity guarantees for large data; ii) we show that this method is computationally and memory efficient (achieving speeds over 3-4x those of prior parallelized Latent Dirichlet Allocation (LDA) methods), and that it scales linearly to text datasets with over a billion documents; iii) we provide an open-source, GPU-based implementation, of this method. This scaling enables previously prohibitive analyses, and we perform two real-world, large-scale new studies of interest to political scientists: we provide the first thorough analysis of the evolution of the #MeToo movement through the lens of over two years of Twitter conversation and a detailed study of social media conversations about election fraud in the 2020 presidential election. Thus this method provides social scientists with the ability to study very large corpora at scale and to answer important theoretically-relevant questions about salient issues in near real-time.
This paper presents a bibliometric analysis of the field of short-term passenger flow forecasting within local public transit, covering 814 publications that span from 1984 to 2024. In addition to common bibliometric analysis tools, a variant of a citation network was developed, and topic modelling was conducted. The analysis reveals that research activity exhibited sporadic patterns prior to 2008, followed by a marked acceleration, characterised by a shift from conventional statistical and machine learning methodologies (e.g., ARIMA, SVM, and basic neural networks) to specialised deep learning architectures. Based on this insight, a connection to more general fields such as machine learning and time series modelling was established. In addition to modelling, spatial, linguistic, and modal biases were identified and findings from existing secondary literature were validated and quantified. This revealed existing gaps, such as constrained data fusion, open (multivariate) data, and underappreciated challenges related to model interpretability, cost-efficiency, and a balance between algorithmic performance and practical deployment considerations. In connection with the superordinate fields, the growth in relevance of foundation models is also noteworthy.
Artificial intelligence (AI) and large language models (LLM) are reshaping science, with most recent advances culminating in fully-automated scientific discovery pipelines. But qualitative research has been left behind. Researchers in qualitative methods are hesitant about AI adoption. Yet when they are willing to use AI at all, they have little choice but to rely on general-purpose tools like ChatGPT to assist with interview interpretation, data annotation, and topic modeling - while simultaneously acknowledging these system's well-known limitations of being biased, opaque, irreproducible, and privacy-compromising. This creates a critical gap: while AI has substantially advanced quantitative methods, the qualitative dimensions essential for meaning-making and comprehensive scientific understanding remain poorly integrated. We argue for developing dedicated qualitative AI systems built from the ground up for interpretive research. Such systems must be transparent, reproducible, and privacy-friendly. We review recent literature to show how existing automated discovery pipelines could be enhanced by robust qualitative capabilities, and identify key opportunities where safe qualitative AI could advance multidisciplinary and mixed-methods research.
The recent success of large language models (LLMs) has sparked a growing interest in training large-scale models. As the model size continues to scale, concerns are growing about the depletion of high-quality, well-curated training data. This has led practitioners to explore training approaches like Federated Learning (FL), which can leverage the abundant data on edge devices while maintaining privacy. However, the decentralization of training datasets in FL introduces challenges to scaling large models, a topic that remains under-explored. This paper fills this gap and provides qualitative insights on generalizing the previous model scaling experience to federated learning scenarios. Specifically, we derive a PAC-Bayes (Probably Approximately Correct Bayesian) upper bound for the generalization error of models trained with stochastic algorithms in federated settings and quantify the impact of distributed training data on the optimal model size by finding the analytic solution of model size that minimizes this bound. Our theoretical results demonstrate that the optimal model size has a negative power law relationship with the number of clients if the total training compute is unchanged. Besides, we also find that switching to FL with the same training compute will inevitably reduce the upper bound of generalization performance that the model can achieve through training, and that estimating the optimal model size in federated scenarios should depend on the average training compute across clients. Furthermore, we also empirically validate the correctness of our results with extensive training runs on different models, network settings, and datasets.




Understanding the physical interaction with wearable robots is essential to ensure safety and comfort. However, this interaction is complex in two key aspects: (1) the motion involved, and (2) the non-linear behaviour of soft tissues. Multiple approaches have been undertaken to better understand this interaction and to improve the quantitative metrics of physical interfaces or cuffs. As these two topics are closely interrelated, finite modelling and soft tissue characterisation offer valuable insights into pressure distribution and shear stress induced by the cuff. Nevertheless, current characterisation methods typically rely on a single fitting variable along one degree of freedom, which limits their applicability, given that interactions with wearable robots often involve multiple degrees of freedom. To address this limitation, this work introduces a dual-variable characterisation method, involving normal and tangential forces, aimed at identifying reliable material parameters and evaluating the impact of single-variable fitting on force and torque responses. This method demonstrates the importance of incorporating two variables into the characterisation process by analysing the normalized mean square error (NMSE) across different scenarios and material models, providing a foundation for simulation at the closest possible level, with a focus on the cuff and the human limb involved in the physical interaction between the user and the wearable robot.
Generating high-quality time series data has emerged as a critical research topic due to its broad utility in supporting downstream time series mining tasks. A major challenge lies in modeling the intrinsic stochasticity of temporal dynamics, as real-world sequences often exhibit random fluctuations and localized variations. While diffusion models have achieved remarkable success, their generation process is computationally inefficient, often requiring hundreds to thousands of expensive function evaluations per sample. Flow matching has emerged as a more efficient paradigm, yet its conventional ordinary differential equation (ODE)-based formulation fails to explicitly capture stochasticity, thereby limiting the fidelity of generated sequences. By contrast, stochastic differential equation (SDE) are naturally suited for modeling randomness and uncertainty. Motivated by these insights, we propose TimeFlow, a novel SDE-based flow matching framework that integrates a encoder-only architecture. Specifically, we design a component-wise decomposed velocity field to capture the multi-faceted structure of time series and augment the vanilla flow-matching optimization with an additional stochastic term to enhance representational expressiveness. TimeFlow is flexible and general, supporting both unconditional and conditional generation tasks within a unified framework. Extensive experiments across diverse datasets demonstrate that our model consistently outperforms strong baselines in generation quality, diversity, and efficiency.

In democracies like India, people are free to express their views and demands. Sometimes this causes situations of civil unrest such as protests, rallies, and marches. These events may be disruptive in nature and are often held without prior permission from the competent authority. Forecasting these events helps administrative officials take necessary action. Usually, protests are announced well in advance to encourage large participation. Therefore, by analyzing such announcements in news articles, planned events can be forecasted beforehand. We developed such a system in this paper to forecast social unrest events using topic modeling and word2vec to filter relevant news articles, and Named Entity Recognition (NER) methods to identify entities such as people, organizations, locations, and dates. Time normalization is applied to convert future date mentions into a standard format. In this paper, we have developed a geographically independent, generalized model to identify key features for filtering civil unrest events. There could be many mentions of entities, but only a few may actually be involved in the event. This paper calls such entities Related Entities and proposes a method to extract them, referred to as Related Entity Extraction.
The Key Value(KV) cache is an important component for efficient inference in autoregressive Large Language Models (LLMs), but its role as a representation of the model's internal state makes it a potential target for integrity attacks. This paper introduces "History Swapping," a novel block-level attack that manipulates the KV cache to steer model generation without altering the user-facing prompt. The attack involves overwriting a contiguous segment of the active generation's cache with a precomputed cache from a different topic. We empirically evaluate this method across 324 configurations on the Qwen 3 family of models, analyzing the impact of timing, magnitude, and layer depth of the cache overwrite. Our findings reveal that only full-layer overwrites can successfully hijack the conversation's topic, leading to three distinct behaviors: immediate and persistent topic shift, partial recovery, or a delayed hijack. Furthermore, we observe that high-level structural plans are encoded early in the generation process and local discourse structure is maintained by the final layers of the model. This work demonstrates that the KV cache is a significant vector for security analysis, as it encodes not just context but also topic trajectory and structural planning, making it a powerful interface for manipulating model behavior.
Understanding the relationships between data points in the latent decision space derived by the deep learning system is critical to evaluating and interpreting the performance of the system on real world data. Detecting \textit{out-of-distribution} (OOD) data for deep learning systems continues to be an active research topic. We investigate the connection between latent space OOD detection and classification accuracy of the model. Using open source simulated and measured Synthetic Aperture RADAR (SAR) datasets, we empirically demonstrate that the OOD detection cannot be used as a proxy measure for model performance. We hope to inspire additional research into the geometric properties of the latent space that may yield future insights into deep learning robustness and generalizability.




Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for nonnegative data, with applications such as hyperspectral unmixing and topic modeling. NMF is a difficult problem in general (NP-hard), and its solutions are typically not unique. To address these two issues, additional constraints or assumptions are often used. In particular, separability assumes that the basis vectors in the NMF are equal to some columns of the input matrix. In that case, the problem is referred to as separable NMF (SNMF) and can be solved in polynomial-time with robustness guarantees, while identifying a unique solution. However, in real-world scenarios, due to noise or variability, multiple data points may lie near the basis vectors, which SNMF does not leverage. In this work, we rely on the smooth separability assumption, which assumes that each basis vector is close to multiple data points. We explore the properties of the corresponding problem, referred to as smooth SNMF (SSNMF), and examine how it relates to SNMF and orthogonal NMF. We then propose a convex model for SSNMF and show that it provably recovers the sought-after factors, even in the presence of noise. We finally adapt an existing fast gradient method to solve this convex model for SSNMF, and show that it compares favorably with state-of-the-art methods on both synthetic and hyperspectral datasets.