Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Recent advances have demonstrated the potential of decoderonly large language models (LLMs) for automatic speech recognition (ASR). However, enabling streaming recognition within this framework remains a challenge. In this work, we propose a novel streaming ASR approach that integrates a read/write policy network with monotonic chunkwise attention (MoChA) to dynamically segment speech embeddings. These segments are interleaved with label sequences during training, enabling seamless integration with the LLM. During inference, the audio stream is buffered until the MoChA module triggers a read signal, at which point the buffered segment together with the previous token is fed into the LLM for the next token prediction. We also introduce a minimal-latency training objective to guide the policy network toward accurate segmentation boundaries. Furthermore, we adopt a joint training strategy in which a non-streaming LLM-ASR model and our streaming model share parameters. Experiments on the AISHELL-1 and AISHELL-2 Mandarin benchmarks demonstrate that our method consistently outperforms recent streaming ASR baselines, achieving character error rates of 5.1% and 5.5%, respectively. The latency optimization results in a 62.5% reduction in average token generation delay with negligible impact on recognition accuracy
We present CALM, a joint Contextual Acoustic-Linguistic Modeling framework for multi-speaker automatic speech recognition (ASR). In personalized AI scenarios, the joint availability of acoustic and linguistic cues naturally motivates the integration of target-speaker conditioning with contextual biasing in overlapping conversations. CALM implements this integration in an end-to-end framework through speaker embedding-driven target-speaker extraction and dynamic vocabulary-based contextual biasing. We evaluate CALM on simulated English (LibriSpeechMix) and Japanese (Corpus of Spontaneous Japanese mixtures, CSJMix). On two-speaker mixtures, CALM reduces biased word error rate (B-WER) from 12.7 to 4.7 on LibriSpeech2Mix and biased character error rate (B-CER) from 16.6 to 8.4 on CSJMix2 (eval3), demonstrating the effectiveness of joint acoustic-linguistic modeling across languages. We additionally report results on the AMI corpus (IHM-mix condition) to validate performance on standardized speech mixtures.
While Automatic Speech Recognition (ASR) is typically benchmarked by word error rate (WER), real-world applications ultimately hinge on semantic fidelity. This mismatch is particularly problematic for dysarthric speech, where articulatory imprecision and disfluencies can cause severe semantic distortions. To bridge this gap, we introduce a Large Language Model (LLM)-based agent for post-ASR correction: a Judge-Editor over the top-k ASR hypotheses that keeps high-confidence spans, rewrites uncertain segments, and operates in both zero-shot and fine-tuned modes. In parallel, we release SAP-Hypo5, the largest benchmark for dysarthric speech correction, to enable reproducibility and future exploration. Under multi-perspective evaluation, our agent achieves a 14.51% WER reduction alongside substantial semantic gains, including a +7.59 pp improvement in MENLI and +7.66 pp in Slot Micro F1 on challenging samples. Our analysis further reveals that WER is highly sensitive to domain shift, whereas semantic metrics correlate more closely with downstream task performance.
In this report, we introduce Qwen3-ASR family, which includes two powerful all-in-one speech recognition models and a novel non-autoregressive speech forced alignment model. Qwen3-ASR-1.7B and Qwen3-ASR-0.6B are ASR models that support language identification and ASR for 52 languages and dialects. Both of them leverage large-scale speech training data and the strong audio understanding ability of their foundation model Qwen3-Omni. We conduct comprehensive internal evaluation besides the open-sourced benchmarks as ASR models might differ little on open-sourced benchmark scores but exhibit significant quality differences in real-world scenarios. The experiments reveal that the 1.7B version achieves SOTA performance among open-sourced ASR models and is competitive with the strongest proprietary APIs while the 0.6B version offers the best accuracy-efficiency trade-off. Qwen3-ASR-0.6B can achieve an average TTFT as low as 92ms and transcribe 2000 seconds speech in 1 second at a concurrency of 128. Qwen3-ForcedAligner-0.6B is an LLM based NAR timestamp predictor that is able to align text-speech pairs in 11 languages. Timestamp accuracy experiments show that the proposed model outperforms the three strongest force alignment models and takes more advantages in efficiency and versatility. To further accelerate the community research of ASR and audio understanding, we release these models under the Apache 2.0 license.
The growing prevalence of neurological disorders associated with dysarthria motivates the need for automated intelligibility assessment methods that are applicalbe across languages. However, most existing approaches are either limited to a single language or fail to capture language-specific factors shaping intelligibility. We present a multilingual phoneme-production assessment framework that integrates universal phone recognition with language-specific phoneme interpretation using contrastive phonological feature distances for phone-to-phoneme mapping and sequence alignment. The framework yields three metrics: phoneme error rate (PER), phonological feature error rate (PFER), and a newly proposed alignment-free measure, phoneme coverage (PhonCov). Analysis on English, Spanish, Italian, and Tamil show that PER benefits from the combination of mapping and alignment, PFER from alignment alone, and PhonCov from mapping. Further analyses demonstrate that the proposed framework captures clinically meaningful patterns of intelligibility degradation consistent with established observations of dysarthric speech.
We propose several improvements to the speech recognition evaluation. First, we propose a string alignment algorithm that supports both multi-reference labeling, arbitrary-length insertions and better word alignment. This is especially useful for non-Latin languages, those with rich word formation, to label cluttered or longform speech. Secondly, we collect a novel test set DiverseSpeech-Ru of longform in-the-wild Russian speech with careful multi-reference labeling. We also perform multi-reference relabeling of popular Russian tests set and study fine-tuning dynamics on its corresponding train set. We demonstrate that the model often adopts to dataset-specific labeling, causing an illusion of metric improvement. Based on the improved word alignment, we develop tools to evaluate streaming speech recognition and to align multiple transcriptions to compare them visually. Additionally, we provide uniform wrappers for many offline and streaming speech recognition models. Our code will be made publicly available.
LLM-based automatic speech recognition (ASR), a well-established approach, connects speech foundation models to large language models (LLMs) through a speech-to-LLM projector, yielding promising results. A common design choice in these architectures is the use of a fixed, manually defined prompt during both training and inference. This setup not only enables applicability across a range of practical scenarios, but also helps maximize model performance. However, the impact of prompt design remains underexplored. This paper presents a comprehensive analysis of commonly used prompts across diverse datasets, showing that prompt choice significantly affects ASR performance and introduces instability, with no single prompt performing best across all cases. Inspired by the speech-to-LLM projector, we propose a prompt projector module, a simple, model-agnostic extension that learns to project prompt embeddings to more effective regions of the LLM input space, without modifying the underlying LLM-based ASR model. Experiments on four datasets show that the addition of a prompt projector consistently improves performance, reduces variability, and outperforms the best manually selected prompts.
Single-word Automatic Speech Recognition (ASR) is a challenging task due to the lack of linguistic context and sensitivity to noise, pronunciation variation, and channel artifacts, especially in low-resource, communication-critical domains such as healthcare and emergency response. This paper reviews recent deep learning approaches and proposes a modular framework for robust single-word detection. The system combines denoising and normalization with a hybrid ASR front end (Whisper + Vosk) and a verification layer designed to handle out-of-vocabulary words and degraded audio. The verification layer supports multiple matching strategies, including embedding similarity, edit distance, and LLM-based matching with optional contextual guidance. We evaluate the framework on the Google Speech Commands dataset and a curated real-world dataset collected from telephony and messaging platforms under bandwidth-limited conditions. Results show that while the hybrid ASR front end performs well on clean audio, the verification layer significantly improves accuracy on noisy and compressed channels. Context-guided and LLM-based matching yield the largest gains, demonstrating that lightweight verification and context mechanisms can substantially improve single-word ASR robustness without sacrificing latency required for real-time telephony applications.
Adapting automatic speech recognition (ASR) systems based on large language models (LLMs) to new domains using text-only data is a significant yet underexplored challenge. Standard fine-tuning of the LLM on target-domain text often disrupts the critical alignment between speech and text modalities learned by the projector, degrading performance. We introduce a novel text-only adaptation method that emulates the audio projection task by treating it as a text denoising task. Our approach thus trains the LLM to recover clean transcripts from noisy inputs. This process effectively adapts the model to a target domain while preserving cross-modal alignment. Our solution is lightweight, requiring no architectural changes or additional parameters. Extensive evaluation on two datasets demonstrates up to 22.1% relative improvement, outperforming recent state-of-the-art text-only adaptation methods.
Self-supervised learning (SSL) has transformed speech processing, yet its reliance on massive pre-training datasets remains a bottleneck. While robustness is often attributed to scale and diversity, the role of the data distribution is less understood. We systematically examine how curated subsets of pre-training data influence Automatic Speech Recognition (ASR) performance. Surprisingly, optimizing for acoustic, speaker, or linguistic diversity yields no clear improvements over random sampling. Instead, we find that prioritizing the longest utterances achieves superior ASR results while using only half the original dataset, reducing pre-training time by 24% on a large corpora. These findings suggest that for pre-training speech SSL models, data length is a more critical factor than either data diversity or overall data quantity for performance and efficiency, offering a new perspective for data selection strategies in SSL speech processing.