Abstract:This study presents an approach for collecting speech samples to build Automatic Speech Recognition (ASR) models for impaired speech, particularly, low-resource languages. It aims to democratize ASR technology and data collection by developing a "cookbook" of best practices and training for community-driven data collection and ASR model building. As a proof-of-concept, this study curated the first open-source dataset of impaired speech in Akan: a widely spoken indigenous language in Ghana. The study involved participants from diverse backgrounds with speech impairments. The resulting dataset, along with the cookbook and open-source tools, are publicly available to enable researchers and practitioners to create inclusive ASR technologies tailored to the unique needs of speech impaired individuals. In addition, this study presents the initial results of fine-tuning open-source ASR models to better recognize impaired speech in Akan.
Abstract:Artificial Intelligence (AI) in Education has been said to have the potential for building more personalised curricula, as well as democratising education worldwide and creating a Renaissance of new ways of teaching and learning. Millions of students are already starting to benefit from the use of these technologies, but millions more around the world are not. If this trend continues, the first delivery of AI in Education could be greater educational inequality, along with a global misallocation of educational resources motivated by the current technological determinism narrative. In this paper, we focus on speculating and posing questions around the future of AI in Education, with the aim of starting the pressing conversation that would set the right foundations for the new generation of education that is permeated by technology. This paper starts by synthesising how AI might change how we learn and teach, focusing specifically on the case of personalised learning companions, and then move to discuss some socio-technical features that will be crucial for avoiding the perils of these AI systems worldwide (and perhaps ensuring their success). This paper also discusses the potential of using AI together with free, participatory and democratic resources, such as Wikipedia, Open Educational Resources and open-source tools. We also emphasise the need for collectively designing human-centered, transparent, interactive and collaborative AI-based algorithms that empower and give complete agency to stakeholders, as well as support new emerging pedagogies. Finally, we ask what would it take for this educational revolution to provide egalitarian and empowering access to education, beyond any political, cultural, language, geographical and learning ability barriers.