Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed

Models, code, and papers for "cancer detection"

Cancerous Nuclei Detection and Scoring in Breast Cancer Histopathological Images

Dec 05, 2016
Pegah Faridi, Habibollah Danyali, Mohammad Sadegh Helfroush, Mojgan Akbarzadeh Jahromi

Early detection and prognosis of breast cancer are feasible by utilizing histopathological grading of biopsy specimens. This research is focused on detection and grading of nuclear pleomorphism in histopathological images of breast cancer. The proposed method consists of three internal steps. First, unmixing colors of H&E is used in the preprocessing step. Second, nuclei boundaries are extracted incorporating the center of cancerous nuclei which are detected by applying morphological operations and Difference of Gaussian filter on the preprocessed image. Finally, segmented nuclei are scored to accomplish one parameter of the Nottingham grading system for breast cancer. In this approach, the nuclei area, chromatin density, contour regularity, and nucleoli presence, are features for nuclear pleomorphism scoring. Experimental results showed that the proposed algorithm, with an accuracy of 86.6%, made significant advancement in detecting cancerous nuclei compared to existing methods in the related literature.

  Access Model/Code and Paper
Discovery Radiomics for Multi-Parametric MRI Prostate Cancer Detection

Oct 20, 2015
Audrey G. Chung, Mohammad Javad Shafiee, Devinder Kumar, Farzad Khalvati, Masoom A. Haider, Alexander Wong

Prostate cancer is the most diagnosed form of cancer in Canadian men, and is the third leading cause of cancer death. Despite these statistics, prognosis is relatively good with a sufficiently early diagnosis, making fast and reliable prostate cancer detection crucial. As imaging-based prostate cancer screening, such as magnetic resonance imaging (MRI), requires an experienced medical professional to extensively review the data and perform a diagnosis, radiomics-driven methods help streamline the process and has the potential to significantly improve diagnostic accuracy and efficiency, and thus improving patient survival rates. These radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which are selected manually and can limit their ability to fully characterize unique prostate cancer tumour phenotype. In this study, we propose a novel \textit{discovery radiomics} framework for generating custom radiomic sequences tailored for prostate cancer detection. Discovery radiomics aims to uncover abstract imaging-based features that capture highly unique tumour traits and characteristics beyond what can be captured using predefined feature models. In this paper, we discover new custom radiomic sequencers for generating new prostate radiomic sequences using multi-parametric MRI data. We evaluated the performance of the discovered radiomic sequencer against a state-of-the-art hand-crafted radiomic sequencer for computer-aided prostate cancer detection with a feedforward neural network using real clinical prostate multi-parametric MRI data. Results for the discovered radiomic sequencer demonstrate good performance in prostate cancer detection and clinical decision support relative to the hand-crafted radiomic sequencer. The use of discovery radiomics shows potential for more efficient and reliable automatic prostate cancer detection.

* 8 pages 

  Access Model/Code and Paper
Prostate Cancer Detection using Deep Convolutional Neural Networks

May 30, 2019
Sunghwan Yoo, Isha Gujrathi, Masoom A. Haider, Farzad Khalvati

Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNNs architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNNs-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 healthy patients. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95% Confidence Interval (CI): 0.84-0.90) and 0.84 (95% CI: 0.76-0.91) at slice level and patient level, respectively.

  Access Model/Code and Paper
Method and System for Image Analysis to Detect Cancer

Aug 26, 2019
Waleed A. Yousef, Ahmed A. Abouelkahire, Deyaaeldeen Almahallawi, Omar S. Marzouk, Sameh K. Mohamed, Waleed A. Mustafa, Omar M. Osama, Ali A. Saleh, Naglaa M. Abdelrazek

Breast cancer is the most common cancer and is the leading cause of cancer death among women worldwide. Detection of breast cancer, while it is still small and confined to the breast, provides the best chance of effective treatment. Computer Aided Detection (CAD) systems that detect cancer from mammograms will help in reducing the human errors that lead to missing breast carcinoma. Literature is rich of scientific papers for methods of CAD design, yet with no complete system architecture to deploy those methods. On the other hand, commercial CADs are developed and deployed only to vendors' mammography machines with no availability to public access. This paper presents a complete CAD; it is complete since it combines, on a hand, the rigor of algorithm design and assessment (method), and, on the other hand, the implementation and deployment of a system architecture for public accessibility (system). (1) We develop a novel algorithm for image enhancement so that mammograms acquired from any digital mammography machine look qualitatively of the same clarity to radiologists' inspection; and is quantitatively standardized for the detection algorithms. (2) We develop novel algorithms for masses and microcalcifications detection with accuracy superior to both literature results and the majority of approved commercial systems. (3) We design, implement, and deploy a system architecture that is computationally effective to allow for deploying these algorithms to cloud for public access.

  Access Model/Code and Paper
A Method to Facilitate Cancer Detection and Type Classification from Gene Expression Data using a Deep Autoencoder and Neural Network

Dec 20, 2018
Xi Chen, Jin Xie, Qingcong Yuan

With the increased affordability and availability of whole-genome sequencing, large-scale and high-throughput gene expression is widely used to characterize diseases, including cancers. However, establishing specificity in cancer diagnosis using gene expression data continues to pose challenges due to the high dimensionality and complexity of the data. Here we present models of deep learning (DL) and apply them to gene expression data for the diagnosis and categorization of cancer. In this study, we have developed two DL models using messenger ribonucleic acid (mRNA) datasets available from the Genomic Data Commons repository. Our models achieved 98% accuracy in cancer detection, with false negative and false positive rates below 1.7%. In our results, we demonstrated that 18 out of 32 cancer-typing classifications achieved more than 90% accuracy. Due to the limitation of a small sample size (less than 50 observations), certain cancers could not achieve a higher accuracy in typing classification, but still achieved high accuracy for the cancer detection task. To validate our models, we compared them with traditional statistical models. The main advantage of our models over traditional cancer detection is the ability to use data from various cancer types to automatically form features to enhance the detection and diagnosis of a specific cancer type.

* 6 pages 

  Access Model/Code and Paper
Lung Cancer Detection and Classification based on Image Processing and Statistical Learning

Nov 25, 2019
Md Rashidul Hasan, Muntasir Al Kabir

Lung cancer is one of the death threatening diseases among human beings. Early and accurate detection of lung cancer can increase the survival rate from lung cancer. Computed Tomography (CT) images are commonly used for detecting the lung cancer.Using a data set of thousands of high-resolution lung scans collected from Kaggle competition [1], we will develop algorithms that accurately determine in the lungs are cancerous or not. The proposed system promises better result than the existing systems, which would be beneficial for the radiologist for the accurate and early detection of cancer. The method has been tested on 198 slices of CT images of various stages of cancer obtained from Kaggle dataset[1] and is found satisfactory results. The accuracy of the proposed method in this dataset is 72.2%

  Access Model/Code and Paper
Ensemble classifier approach in breast cancer detection and malignancy grading- A review

Apr 11, 2017
Deepti Ameta

The diagnosed cases of Breast cancer is increasing annually and unfortunately getting converted into a high mortality rate. Cancer, at the early stages, is hard to detect because the malicious cells show similar properties (density) as shown by the non-malicious cells. The mortality ratio could have been minimized if the breast cancer could have been detected in its early stages. But the current systems have not been able to achieve a fully automatic system which is not just capable of detecting the breast cancer but also can detect the stage of it. Estimation of malignancy grading is important in diagnosing the degree of growth of malicious cells as well as in selecting a proper therapy for the patient. Therefore, a complete and efficient clinical decision support system is proposed which is capable of achieving breast cancer malignancy grading scheme very efficiently. The system is based on Image processing and machine learning domains. Classification Imbalance problem, a machine learning problem, occurs when instances of one class is much higher than the instances of the other class resulting in an inefficient classification of samples and hence a bad decision support system. Therefore EUSBoost, ensemble based classifier is proposed which is efficient and is able to outperform other classifiers as it takes the benefits of both-boosting algorithm with Random Undersampling techniques. Also comparison of EUSBoost with other techniques is shown in the paper.

* International Journal of Managing Public Sector Information and Communication Technologies (IJMPICT) Vol. 8, No. 1, March 2017 
* 10 pages,1 figure,5 tables 

  Access Model/Code and Paper
A Study of Deep Learning Colon Cancer Detection in Limited Data Access Scenarios

May 22, 2020
Apostolia Tsirikoglou, Karin Stacke, Gabriel Eilertsen, Martin Lindvall, Jonas Unger

Digitization of histopathology slides has led to several advances, from easy data sharing and collaborations to the development of digital diagnostic tools. Deep learning (DL) methods for classification and detection have shown great potential, but often require large amounts of training data that are hard to collect, and annotate. For many cancer types, the scarceness of data creates barriers for training DL models. One such scenario relates to detecting tumor metastasis in lymph node tissue, where the low ratio of tumor to non-tumor cells makes the diagnostic task hard and time-consuming. DL-based tools can allow faster diagnosis, with potentially increased quality. Unfortunately, due to the sparsity of tumor cells, annotating this type of data demands a high level of effort from pathologists. Using weak annotations from slide-level images have shown great potential, but demand access to a substantial amount of data as well. In this study, we investigate mitigation strategies for limited data access scenarios. Particularly, we address whether it is possible to exploit mutual structure between tissues to develop general techniques, wherein data from one type of cancer in a particular tissue could have diagnostic value for other cancers in other tissues. Our case is exemplified by a DL model for metastatic colon cancer detection in lymph nodes. Could such a model be trained with little or even no lymph node data? As alternative data sources, we investigate 1) tumor cells taken from the primary colon tumor tissue, and 2) cancer data from a different organ (breast), either as is or transformed to the target domain (colon) using Cycle-GANs. We show that the suggested approaches make it possible to detect cancer metastasis with no or very little lymph node data, opening up for the possibility that existing, annotated histopathology data could generalize to other domains.

* Presented at the ICLR 2020 Workshop on AI for Overcoming Global Disparities in Cancer Care (AI4CC) 

  Access Model/Code and Paper
Learning from Suspected Target: Bootstrapping Performance for Breast Cancer Detection in Mammography

Mar 01, 2020
Li Xiao, Cheng Zhu, Junjun Liu, Chunlong Luo, Peifang Liu, Yi Zhao

Deep learning object detection algorithm has been widely used in medical image analysis. Currently all the object detection tasks are based on the data annotated with object classes and their bounding boxes. On the other hand, medical images such as mammography usually contain normal regions or objects that are similar to the lesion region, and may be misclassified in the testing stage if they are not taken care of. In this paper, we address such problem by introducing a novel top likelihood loss together with a new sampling procedure to select and train the suspected target regions, as well as proposing a similarity loss to further identify suspected targets from targets. Mean average precision (mAP) according to the predicted targets and specificity, sensitivity, accuracy, AUC values according to classification of patients are adopted for performance comparisons. We firstly test our proposed method on a private dense mammogram dataset. Results show that our proposed method greatly reduce the false positive rate and the specificity is increased by 0.25 on detecting mass type cancer. It is worth mention that dense breast typically has a higher risk for developing breast cancers and also are harder for cancer detection in diagnosis, and our method outperforms a reported result from performance of radiologists. Our method is also validated on the public Digital Database for Screening Mammography (DDSM) dataset, brings significant improvement on mass type cancer detection and outperforms the most state-of-the-art work.

  Access Model/Code and Paper
Microwave breast cancer detection using Empirical Mode Decomposition features

Feb 24, 2017
Hongchao Song, Yunpeng Li, Mark Coates, Aidong Men

Microwave-based breast cancer detection has been proposed as a complementary approach to compensate for some drawbacks of existing breast cancer detection techniques. Among the existing microwave breast cancer detection methods, machine learning-type algorithms have recently become more popular. These focus on detecting the existence of breast tumours rather than performing imaging to identify the exact tumour position. A key step of the machine learning approaches is feature extraction. One of the most widely used feature extraction method is principle component analysis (PCA). However, it can be sensitive to signal misalignment. This paper presents an empirical mode decomposition (EMD)-based feature extraction method, which is more robust to the misalignment. Experimental results involving clinical data sets combined with numerically simulated tumour responses show that combined features from EMD and PCA improve the detection performance with an ensemble selection-based classifier.

  Access Model/Code and Paper
Lung Cancer Detection using Co-learning from Chest CT Images and Clinical Demographics

Feb 21, 2019
Jiachen Wang, Riqiang Gao, Yuankai Huo, Shunxing Bao, Yunxi Xiong, Sanja L. Antic, Travis J. Osterman, Pierre P. Massion, Bennett A. Landman

Early detection of lung cancer is essential in reducing mortality. Recent studies have demonstrated the clinical utility of low-dose computed tomography (CT) to detect lung cancer among individuals selected based on very limited clinical information. However, this strategy yields high false positive rates, which can lead to unnecessary and potentially harmful procedures. To address such challenges, we established a pipeline that co-learns from detailed clinical demographics and 3D CT images. Toward this end, we leveraged data from the Consortium for Molecular and Cellular Characterization of Screen-Detected Lesions (MCL), which focuses on early detection of lung cancer. A 3D attention-based deep convolutional neural net (DCNN) is proposed to identify lung cancer from the chest CT scan without prior anatomical location of the suspicious nodule. To improve upon the non-invasive discrimination between benign and malignant, we applied a random forest classifier to a dataset integrating clinical information to imaging data. The results show that the AUC obtained from clinical demographics alone was 0.635 while the attention network alone reached an accuracy of 0.687. In contrast when applying our proposed pipeline integrating clinical and imaging variables, we reached an AUC of 0.787 on the testing dataset. The proposed network both efficiently captures anatomical information for classification and also generates attention maps that explain the features that drive performance.

* SPIE Medical Image, oral presentation 

  Access Model/Code and Paper
A Semi-Supervised Machine Learning Approach to Detecting Recurrent Metastatic Breast Cancer Cases Using Linked Cancer Registry and Electronic Medical Record Data

Jan 17, 2019
Albee Y. Ling, Allison W. Kurian, Jennifer L. Caswell-Jin, George W. Sledge Jr., Nigam H. Shah, Suzanne R. Tamang

Objectives: Most cancer data sources lack information on metastatic recurrence. Electronic medical records (EMRs) and population-based cancer registries contain complementary information on cancer treatment and outcomes, yet are rarely used synergistically. To enable detection of metastatic breast cancer (MBC), we applied a semi-supervised machine learning framework to linked EMR-California Cancer Registry (CCR) data. Materials and Methods: We studied 11,459 female patients treated at Stanford Health Care who received an incident breast cancer diagnosis from 2000-2014. The dataset consisted of structured data and unstructured free-text clinical notes from EMR, linked to CCR, a component of the Surveillance, Epidemiology and End Results (SEER) database. We extracted information on metastatic disease from patient notes to infer a class label and then trained a regularized logistic regression model for MBC classification. We evaluated model performance on a gold standard set of set of 146 patients. Results: There are 495 patients with de novo stage IV MBC, 1,374 patients initially diagnosed with Stage 0-III disease had recurrent MBC, and 9,590 had no evidence of metastatis. The median follow-up time is 96.3 months (mean 97.8, standard deviation 46.7). The best-performing model incorporated both EMR and CCR features. The area under the receiver-operating characteristic curve=0.925 [95% confidence interval: 0.880-0.969], sensitivity=0.861, specificity=0.878 and overall accuracy=0.870. Discussion and Conclusion: A framework for MBC case detection combining EMR and CCR data achieved good sensitivity, specificity and discrimination without requiring expert-labeled examples. This approach enables population-based research on how patients die from cancer and may identify novel predictors of cancer recurrence.

  Access Model/Code and Paper
The impact of patient clinical information on automated skin cancer detection

Sep 16, 2019
Andre G. C. Pacheco, Renato A. Krohling

Skin cancer is one of the most common types of cancer around the world. For this reason, over the past years, different approaches have been proposed to assist detect it. Nonetheless, most of them are based only on dermoscopy images and do not take into account the patient clinical information. In this work, first, we present a new dataset that contains clinical images, acquired from smartphones, and patient clinical information of the skin lesions. Next, we introduce a straightforward approach to combine the clinical data and the images using different well-known deep learning models. These models are applied to the presented dataset using only the images and combining them with the patient clinical information. We present a comprehensive study to show the impact of the clinical data on the final predictions. The results obtained by combining both sets of information show a general improvement of around 7% in the balanced accuracy for all models. In addition, the statistical test indicates significant differences between the models with and without considering both data. The improvement achieved shows the potential of using patient clinical information in skin cancer detection and indicates that this piece of information is important to leverage skin cancer detection systems.

  Access Model/Code and Paper
Ensembles of Radial Basis Function Networks for Spectroscopic Detection of Cervical Pre-Cancer

May 20, 1999
Kagan Tumer, Nirmala Ramanujam, Joydeep Ghosh, Rebecca Richards-Kortum

The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, non-invasively and quantitatively probes the biochemical and morphological changes that occur in pre-cancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337, 380 and 460 nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from pre-cancerous tissue samples. The use of connectionist methods such as multi layered perceptrons, radial basis function networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated, and near real-time implementation of pre-cancer detection in the hands of non-experts. The results are more reliable, direct and accurate than those achieved by either human experts or multivariate statistical algorithms.

* IEEE Transactions on Biomedical Engineering, vol 45, no. 8, pp 953-962, 1998 
* 23 pages 

  Access Model/Code and Paper
Spatio-spectral deep learning methods for in-vivo hyperspectral laryngeal cancer detection

Apr 21, 2020
Marcel Bengs, Stephan Westermann, Nils Gessert, Dennis Eggert, Andreas O. H. Gerstner, Nina A. Mueller, Christian Betz, Wiebke Laffers, Alexander Schlaefer

Early detection of head and neck tumors is crucial for patient survival. Often, diagnoses are made based on endoscopic examination of the larynx followed by biopsy and histological analysis, leading to a high inter-observer variability due to subjective assessment. In this regard, early non-invasive diagnostics independent of the clinician would be a valuable tool. A recent study has shown that hyperspectral imaging (HSI) can be used for non-invasive detection of head and neck tumors, as precancerous or cancerous lesions show specific spectral signatures that distinguish them from healthy tissue. However, HSI data processing is challenging due to high spectral variations, various image interferences, and the high dimensionality of the data. Therefore, performance of automatic HSI analysis has been limited and so far, mostly ex-vivo studies have been presented with deep learning. In this work, we analyze deep learning techniques for in-vivo hyperspectral laryngeal cancer detection. For this purpose we design and evaluate convolutional neural networks (CNNs) with 2D spatial or 3D spatio-spectral convolutions combined with a state-of-the-art Densenet architecture. For evaluation, we use an in-vivo data set with HSI of the oral cavity or oropharynx. Overall, we present multiple deep learning techniques for in-vivo laryngeal cancer detection based on HSI and we show that jointly learning from the spatial and spectral domain improves classification accuracy notably. Our 3D spatio-spectral Densenet achieves an average accuracy of 81%.

* Accepted at SPIE Medical Imaging 2020 

  Access Model/Code and Paper
Detecting and analysing spontaneous oral cancer speech in the wild

Jul 28, 2020
Bence Mark Halpern, Rob van Son, Michiel van den Brekel, Odette Scharenborg

Oral cancer speech is a disease which impacts more than half a million people worldwide every year. Analysis of oral cancer speech has so far focused on read speech. In this paper, we 1) present and 2) analyse a three-hour long spontaneous oral cancer speech dataset collected from YouTube. 3) We set baselines for an oral cancer speech detection task on this dataset. The analysis of these explainable machine learning baselines shows that sibilants and stop consonants are the most important indicators for spontaneous oral cancer speech detection.

* Accepted to Interspeech 2020 

  Access Model/Code and Paper
Deep Object Detection based Mitosis Analysis in Breast Cancer Histopathological Images

Mar 17, 2020
Anabia Sohail, Muhammad Ahsan Mukhtar, Asifullah Khan, Muhammad Mohsin Zafar, Aneela Zameer, Saranjam Khan

Empirical evaluation of breast tissue biopsies for mitotic nuclei detection is considered an important prognostic biomarker in tumor grading and cancer progression. However, automated mitotic nuclei detection poses several challenges because of the unavailability of pixel-level annotations, different morphological configurations of mitotic nuclei, their sparse representation, and close resemblance with non-mitotic nuclei. These challenges undermine the precision of the automated detection model and thus make detection difficult in a single phase. This work proposes an end-to-end detection system for mitotic nuclei identification in breast cancer histopathological images. Deep object detection-based Mask R-CNN is adapted for mitotic nuclei detection that initially selects the candidate mitotic region with maximum recall. However, in the second phase, these candidate regions are refined by multi-object loss function to improve the precision. The performance of the proposed detection model shows improved discrimination ability (F-score of 0.86) for mitotic nuclei with significant precision (0.86) as compared to the two-stage detection models (F-score of 0.701) on TUPAC16 dataset. Promising results suggest that the deep object detection-based model has the potential to learn the characteristic features of mitotic nuclei from weakly annotated data and suggests that it can be adapted for the identification of other nuclear bodies in histopathological images.

* Tables: 4, Figures 11, Pages: 21 

  Access Model/Code and Paper
Discovery Radiomics via Deep Multi-Column Radiomic Sequencers for Skin Cancer Detection

Sep 24, 2017
Mohammad Javad Shafiee, Alexander Wong

While skin cancer is the most diagnosed form of cancer in men and women, with more cases diagnosed each year than all other cancers combined, sufficiently early diagnosis results in very good prognosis and as such makes early detection crucial. While radiomics have shown considerable promise as a powerful diagnostic tool for significantly improving oncological diagnostic accuracy and efficiency, current radiomics-driven methods have largely rely on pre-defined, hand-crafted quantitative features, which can greatly limit the ability to fully characterize unique cancer phenotype that distinguish it from healthy tissue. Recently, the notion of discovery radiomics was introduced, where a large amount of custom, quantitative radiomic features are directly discovered from the wealth of readily available medical imaging data. In this study, we present a novel discovery radiomics framework for skin cancer detection, where we leverage novel deep multi-column radiomic sequencers for high-throughput discovery and extraction of a large amount of custom radiomic features tailored for characterizing unique skin cancer tissue phenotype. The discovered radiomic sequencer was tested against 9,152 biopsy-proven clinical images comprising of different skin cancers such as melanoma and basal cell carcinoma, and demonstrated sensitivity and specificity of 91% and 75%, respectively, thus achieving dermatologist-level performance and \break hence can be a powerful tool for assisting general practitioners and dermatologists alike in improving the efficiency, consistency, and accuracy of skin cancer diagnosis.

  Access Model/Code and Paper
Cancer Metastasis Detection With Neural Conditional Random Field

Jun 19, 2018
Yi Li, Wei Ping

Breast cancer diagnosis often requires accurate detection of metastasis in lymph nodes through Whole-slide Images (WSIs). Recent advances in deep convolutional neural networks (CNNs) have shown significant successes in medical image analysis and particularly in computational histopathology. Because of the outrageous large size of WSIs, most of the methods divide one slide into lots of small image patches and perform classification on each patch independently. However, neighboring patches often share spatial correlations, and ignoring these spatial correlations may result in inconsistent predictions. In this paper, we propose a neural conditional random field (NCRF) deep learning framework to detect cancer metastasis in WSIs. NCRF considers the spatial correlations between neighboring patches through a fully connected CRF which is directly incorporated on top of a CNN feature extractor. The whole deep network can be trained end-to-end with standard back-propagation algorithm with minor computational overhead from the CRF component. The CNN feature extractor can also benefit from considering spatial correlations via the CRF component. Compared to the baseline method without considering spatial correlations, we show that the proposed NCRF framework obtains probability maps of patch predictions with better visual quality. We also demonstrate that our method outperforms the baseline in cancer metastasis detection on the Camelyon16 dataset and achieves an average FROC score of 0.8096 on the test set. NCRF is open sourced at

* 9 pages, 5 figures, MIDL 2018 

  Access Model/Code and Paper
Automatic Application Level Set Approach in Detection Calcifications in Mammographic Image

Sep 01, 2011
Atef Boujelben, Hedi Tmar, Jameleddine Mnif, Mohamed Abid

Breast cancer is considered as one of a major health problem that constitutes the strongest cause behind mortality among women in the world. So, in this decade, breast cancer is the second most common type of cancer, in term of appearance frequency, and the fifth most common cause of cancer related death. In order to reduce the workload on radiologists, a variety of CAD systems; Computer-Aided Diagnosis (CADi) and Computer-Aided Detection (CADe) have been proposed. In this paper, we interested on CADe tool to help radiologist to detect cancer. The proposed CADe is based on a three-step work flow; namely, detection, analysis and classification. This paper deals with the problem of automatic detection of Region Of Interest (ROI) based on Level Set approach depended on edge and region criteria. This approach gives good visual information from the radiologist. After that, the features extraction using textures characteristics and the vector classification using Multilayer Perception (MLP) and k-Nearest Neighbours (KNN) are adopted to distinguish different ACR (American College of Radiology) classification. Moreover, we use the Digital Database for Screening Mammography (DDSM) for experiments and these results in term of accuracy varied between 60 % and 70% are acceptable and must be ameliorated to aid radiologist.

* 14 pages, 9 figures 

  Access Model/Code and Paper