Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

"cancer detection": models, code, and papers

Cancerous Nuclei Detection and Scoring in Breast Cancer Histopathological Images

Dec 05, 2016
Pegah Faridi, Habibollah Danyali, Mohammad Sadegh Helfroush, Mojgan Akbarzadeh Jahromi

Early detection and prognosis of breast cancer are feasible by utilizing histopathological grading of biopsy specimens. This research is focused on detection and grading of nuclear pleomorphism in histopathological images of breast cancer. The proposed method consists of three internal steps. First, unmixing colors of H&E is used in the preprocessing step. Second, nuclei boundaries are extracted incorporating the center of cancerous nuclei which are detected by applying morphological operations and Difference of Gaussian filter on the preprocessed image. Finally, segmented nuclei are scored to accomplish one parameter of the Nottingham grading system for breast cancer. In this approach, the nuclei area, chromatin density, contour regularity, and nucleoli presence, are features for nuclear pleomorphism scoring. Experimental results showed that the proposed algorithm, with an accuracy of 86.6%, made significant advancement in detecting cancerous nuclei compared to existing methods in the related literature.

  
Access Paper or Ask Questions

Breast Cancer Detection using Histopathological Images

Feb 12, 2022
Jitendra Maan, Harsh Maan

Cancer is one of the most common and fatal diseases in the world. Breast cancer affects one in every eight women and one in every eight hundred men. Hence, our prime target should be early detection of cancer because the early detection of cancer can be helpful to cure cancer effectively. Therefore, we propose a saliency detection system with the help of advanced deep learning techniques, such that the machine will be taught to emulate actions of pathologists for localization of diagnostically pertinent regions. We study identification of five diagnostic categories of breast cancer by training a CNN (VGG16, ResNet architecture). We have used BreakHis dataset to train our model. We focus on both detection and classification of cancerous regions in histopathology images. The diagnostically relevant regions are salient. The detection system will be available as an open source web application which can be used by pathologists and medical institutions.

* International Journal of Computer Science Trends and Technology (IJCST) V10(1):Page(53-58) Jan-Feb 2022. ISSN: 2347-8578.www.ijcstjournal.org 
* 6 pages, 10 figures, Published with International Journal of Computer Science Trends and Technology (IJCST) 
  
Access Paper or Ask Questions

Breast cancer detection using artificial intelligence techniques: A systematic literature review

Mar 08, 2022
Ali Bou Nassif, Manar Abu Talib, Qassim Nasir, Yaman Afadar, Omar Elgendy

Cancer is one of the most dangerous diseases to humans, and yet no permanent cure has been developed for it. Breast cancer is one of the most common cancer types. According to the National Breast Cancer foundation, in 2020 alone, more than 276,000 new cases of invasive breast cancer and more than 48,000 non-invasive cases were diagnosed in the US. To put these figures in perspective, 64% of these cases are diagnosed early in the disease's cycle, giving patients a 99% chance of survival. Artificial intelligence and machine learning have been used effectively in detection and treatment of several dangerous diseases, helping in early diagnosis and treatment, and thus increasing the patient's chance of survival. Deep learning has been designed to analyze the most important features affecting detection and treatment of serious diseases. For example, breast cancer can be detected using genes or histopathological imaging. Analysis at the genetic level is very expensive, so histopathological imaging is the most common approach used to detect breast cancer. In this research work, we systematically reviewed previous work done on detection and treatment of breast cancer using genetic sequencing or histopathological imaging with the help of deep learning and machine learning. We also provide recommendations to researchers who will work in this field

* Artificial Intelligence in Medicine, Elsevier, Vol 127, May 2022 
  
Access Paper or Ask Questions

Discovery Radiomics for Multi-Parametric MRI Prostate Cancer Detection

Oct 20, 2015
Audrey G. Chung, Mohammad Javad Shafiee, Devinder Kumar, Farzad Khalvati, Masoom A. Haider, Alexander Wong

Prostate cancer is the most diagnosed form of cancer in Canadian men, and is the third leading cause of cancer death. Despite these statistics, prognosis is relatively good with a sufficiently early diagnosis, making fast and reliable prostate cancer detection crucial. As imaging-based prostate cancer screening, such as magnetic resonance imaging (MRI), requires an experienced medical professional to extensively review the data and perform a diagnosis, radiomics-driven methods help streamline the process and has the potential to significantly improve diagnostic accuracy and efficiency, and thus improving patient survival rates. These radiomics-driven methods currently rely on hand-crafted sets of quantitative imaging-based features, which are selected manually and can limit their ability to fully characterize unique prostate cancer tumour phenotype. In this study, we propose a novel \textit{discovery radiomics} framework for generating custom radiomic sequences tailored for prostate cancer detection. Discovery radiomics aims to uncover abstract imaging-based features that capture highly unique tumour traits and characteristics beyond what can be captured using predefined feature models. In this paper, we discover new custom radiomic sequencers for generating new prostate radiomic sequences using multi-parametric MRI data. We evaluated the performance of the discovered radiomic sequencer against a state-of-the-art hand-crafted radiomic sequencer for computer-aided prostate cancer detection with a feedforward neural network using real clinical prostate multi-parametric MRI data. Results for the discovered radiomic sequencer demonstrate good performance in prostate cancer detection and clinical decision support relative to the hand-crafted radiomic sequencer. The use of discovery radiomics shows potential for more efficient and reliable automatic prostate cancer detection.

* 8 pages 
  
Access Paper or Ask Questions

Prostate Cancer Detection using Deep Convolutional Neural Networks

May 30, 2019
Sunghwan Yoo, Isha Gujrathi, Masoom A. Haider, Farzad Khalvati

Prostate cancer is one of the most common forms of cancer and the third leading cause of cancer death in North America. As an integrated part of computer-aided detection (CAD) tools, diffusion-weighted magnetic resonance imaging (DWI) has been intensively studied for accurate detection of prostate cancer. With deep convolutional neural networks (CNNs) significant success in computer vision tasks such as object detection and segmentation, different CNNs architectures are increasingly investigated in medical imaging research community as promising solutions for designing more accurate CAD tools for cancer detection. In this work, we developed and implemented an automated CNNs-based pipeline for detection of clinically significant prostate cancer (PCa) for a given axial DWI image and for each patient. DWI images of 427 patients were used as the dataset, which contained 175 patients with PCa and 252 healthy patients. To measure the performance of the proposed pipeline, a test set of 108 (out of 427) patients were set aside and not used in the training phase. The proposed pipeline achieved area under the receiver operating characteristic curve (AUC) of 0.87 (95% Confidence Interval (CI): 0.84-0.90) and 0.84 (95% CI: 0.76-0.91) at slice level and patient level, respectively.

  
Access Paper or Ask Questions

Method and System for Image Analysis to Detect Cancer

Aug 26, 2019
Waleed A. Yousef, Ahmed A. Abouelkahire, Deyaaeldeen Almahallawi, Omar S. Marzouk, Sameh K. Mohamed, Waleed A. Mustafa, Omar M. Osama, Ali A. Saleh, Naglaa M. Abdelrazek

Breast cancer is the most common cancer and is the leading cause of cancer death among women worldwide. Detection of breast cancer, while it is still small and confined to the breast, provides the best chance of effective treatment. Computer Aided Detection (CAD) systems that detect cancer from mammograms will help in reducing the human errors that lead to missing breast carcinoma. Literature is rich of scientific papers for methods of CAD design, yet with no complete system architecture to deploy those methods. On the other hand, commercial CADs are developed and deployed only to vendors' mammography machines with no availability to public access. This paper presents a complete CAD; it is complete since it combines, on a hand, the rigor of algorithm design and assessment (method), and, on the other hand, the implementation and deployment of a system architecture for public accessibility (system). (1) We develop a novel algorithm for image enhancement so that mammograms acquired from any digital mammography machine look qualitatively of the same clarity to radiologists' inspection; and is quantitatively standardized for the detection algorithms. (2) We develop novel algorithms for masses and microcalcifications detection with accuracy superior to both literature results and the majority of approved commercial systems. (3) We design, implement, and deploy a system architecture that is computationally effective to allow for deploying these algorithms to cloud for public access.

  
Access Paper or Ask Questions

A Method to Facilitate Cancer Detection and Type Classification from Gene Expression Data using a Deep Autoencoder and Neural Network

Dec 20, 2018
Xi Chen, Jin Xie, Qingcong Yuan

With the increased affordability and availability of whole-genome sequencing, large-scale and high-throughput gene expression is widely used to characterize diseases, including cancers. However, establishing specificity in cancer diagnosis using gene expression data continues to pose challenges due to the high dimensionality and complexity of the data. Here we present models of deep learning (DL) and apply them to gene expression data for the diagnosis and categorization of cancer. In this study, we have developed two DL models using messenger ribonucleic acid (mRNA) datasets available from the Genomic Data Commons repository. Our models achieved 98% accuracy in cancer detection, with false negative and false positive rates below 1.7%. In our results, we demonstrated that 18 out of 32 cancer-typing classifications achieved more than 90% accuracy. Due to the limitation of a small sample size (less than 50 observations), certain cancers could not achieve a higher accuracy in typing classification, but still achieved high accuracy for the cancer detection task. To validate our models, we compared them with traditional statistical models. The main advantage of our models over traditional cancer detection is the ability to use data from various cancer types to automatically form features to enhance the detection and diagnosis of a specific cancer type.

* 6 pages 
  
Access Paper or Ask Questions

Transfer Learning for Oral Cancer Detection using Microscopic Images

Nov 23, 2020
Rutwik Palaskar, Renu Vyas, Vilas Khedekar, Sangeeta Palaskar, Pranjal Sahu

Oral cancer has more than 83% survival rate if detected in its early stages, however, only 29% of cases are currently detected early. Deep learning techniques can detect patterns of oral cancer cells and can aid in its early detection. In this work, we present the first results of neural networks for oral cancer detection using microscopic images. We compare numerous state-of-the-art models via transfer learning approach and collect and release an augmented dataset of high-quality microscopic images of oral cancer. We present a comprehensive study of different models and report their performance on this type of data. Overall, we obtain a 10-15% absolute improvement with transfer learning methods compared to a simple Convolutional Neural Network baseline. Ablation studies show the added benefit of data augmentation techniques with finetuning for this task.

  
Access Paper or Ask Questions

A Combined PCA-MLP Network for Early Breast Cancer Detection

Jun 18, 2022
Md. Wahiduzzaman Khan Arnob, Arunima Dey Pooja, Md. Saif Hassan Onim

Breast cancer is the second most responsible for all cancer types and has been the cause of numerous deaths over the years, especially among women. Any improvisation of the existing diagnosis system for the detection of cancer can contribute to minimizing the death ratio. Moreover, cancer detection at an early stage has recently been a prime research area in the scientific community to enhance the survival rate. Proper choice of machine learning tools can ensure early-stage prognosis with high accuracy. In this paper, we have studied different machine learning algorithms to detect whether a patient is likely to face breast cancer or not. Due to the implicit behavior of early-stage features, we have implemented a multilayer perception model with the integration of PCA and suggested it to be more viable than other detection algorithms. Our 4 layers MLP-PCA network has obtained the best accuracy of 100% with a mean of 90.48% accuracy on the BCCD dataset.

  
Access Paper or Ask Questions

Machine Learning-based Lung and Colon Cancer Detection using Deep Feature Extraction and Ensemble Learning

Jun 03, 2022
Md. Alamin Talukder, Md. Manowarul Islam, Md Ashraf Uddin, Arnisha Akhter, Khondokar Fida Hasan, Mohammad Ali Moni

Cancer is a fatal disease caused by a combination of genetic diseases and a variety of biochemical abnormalities. Lung and colon cancer have emerged as two of the leading causes of death and disability in humans. The histopathological detection of such malignancies is usually the most important component in determining the best course of action. Early detection of the ailment on either front considerably decreases the likelihood of mortality. Machine learning and deep learning techniques can be utilized to speed up such cancer detection, allowing researchers to study a large number of patients in a much shorter amount of time and at a lower cost. In this research work, we introduced a hybrid ensemble feature extraction model to efficiently identify lung and colon cancer. It integrates deep feature extraction and ensemble learning with high-performance filtering for cancer image datasets. The model is evaluated on histopathological (LC25000) lung and colon datasets. According to the study findings, our hybrid model can detect lung, colon, and (lung and colon) cancer with accuracy rates of 99.05%, 100%, and 99.30%, respectively. The study's findings show that our proposed strategy outperforms existing models significantly. Thus, these models could be applicable in clinics to support the doctor in the diagnosis of cancers.

* Accepted for publication in the Special Issue of Expert Systems with Applications (IF:6.954, Cite:12.70) How to Cite: Md. Alamin Talukder, Md. Manowarul Islam, Md Ashraf Uddin, Arnisha Akhter, Khondokar Fida Hasan, Mohammad Ali Moni. "Machine Learning-based Lung and Colon Cancer Detection using Deep Feature Extraction and Ensemble Learning", Expert Systems with Applications. 2022 Jun 1 
  
Access Paper or Ask Questions
1
2
3
4
5
6
7
>>