Abstract:Cervical cancer remains a significant health problem, especially in developing countries. Early detection is critical for effective treatment. Convolutional neural networks (CNN) have shown promise in automated cervical cancer screening, but their performance depends on Pap smear image quality. This study investigates the impact of various image preprocessing techniques on CNN performance for cervical cancer classification using the SIPaKMeD dataset. Three preprocessing techniques were evaluated: perona-malik diffusion (PMD) filter for noise reduction, contrast-limited adaptive histogram equalization (CLAHE) for image contrast enhancement, and the proposed hybrid PMD filter-CLAHE approach. The enhanced image datasets were evaluated on pretrained models, such as ResNet-34, ResNet-50, SqueezeNet-1.0, MobileNet-V2, EfficientNet-B0, EfficientNet-B1, DenseNet-121, and DenseNet-201. The results show that hybrid preprocessing PMD filter-CLAHE can improve the Pap smear image quality and CNN architecture performance compared to the original images. The maximum metric improvements are 13.62% for accuracy, 10.04% for precision, 13.08% for recall, and 14.34% for F1-score. The proposed hybrid PMD filter-CLAHE technique offers a new perspective in improving cervical cancer classification performance using CNN architectures.
Abstract:Pap smear image segmentation is crucial for cervical cancer diagnosis. However, traditional segmentation models often struggle with complex cellular structures and variations in pap smear images. This study proposes a hybrid Dense-UNet201 optimization approach that integrates a pretrained DenseNet201 as the encoder for the U-Net architecture and optimizes it using the spider monkey optimization (SMO) algorithm. The Dense-UNet201 model excelled at feature extraction. The SMO was modified to handle categorical and discrete parameters. The SIPaKMeD dataset was used in this study and evaluated using key performance metrics, including loss, accuracy, Intersection over Union (IoU), and Dice coefficient. The experimental results showed that Dense-UNet201 outperformed U-Net, Res-UNet50, and Efficient-UNetB0. SMO Dense-UNet201 achieved a segmentation accuracy of 96.16%, an IoU of 91.63%, and a Dice coefficient score of 95.63%. These findings underscore the effectiveness of image preprocessing, pretrained models, and metaheuristic optimization in improving medical image analysis and provide new insights into cervical cell segmentation methods.
Abstract:Pap smear image quality is crucial for cervical cancer detection. This study introduces an optimized hybrid approach that combines the Perona-Malik Diffusion (PMD) filter with contrast-limited adaptive histogram equalization (CLAHE) to enhance Pap smear image quality. The PMD filter reduces the image noise, whereas CLAHE improves the image contrast. The hybrid method was optimized using spider monkey optimization (SMO PMD-CLAHE). BRISQUE and CEIQ are the new objective functions for the PMD filter and CLAHE optimization, respectively. The simulations were conducted using the SIPaKMeD dataset. The results indicate that SMO outperforms state-of-the-art methods in optimizing the PMD filter and CLAHE. The proposed method achieved an average effective measure of enhancement (EME) of 5.45, root mean square (RMS) contrast of 60.45, Michelson's contrast (MC) of 0.995, and entropy of 6.80. This approach offers a new perspective for improving Pap smear image quality.