Alert button
Picture for Jef Vandemeulebroucke

Jef Vandemeulebroucke

Alert button

The STOIC2021 COVID-19 AI challenge: applying reusable training methodologies to private data

Jun 25, 2023
Luuk H. Boulogne, Julian Lorenz, Daniel Kienzle, Robin Schon, Katja Ludwig, Rainer Lienhart, Simon Jegou, Guang Li, Cong Chen, Qi Wang, Derik Shi, Mayug Maniparambil, Dominik Muller, Silvan Mertes, Niklas Schroter, Fabio Hellmann, Miriam Elia, Ine Dirks, Matias Nicolas Bossa, Abel Diaz Berenguer, Tanmoy Mukherjee, Jef Vandemeulebroucke, Hichem Sahli, Nikos Deligiannis, Panagiotis Gonidakis, Ngoc Dung Huynh, Imran Razzak, Reda Bouadjenek, Mario Verdicchio, Pasquale Borrelli, Marco Aiello, James A. Meakin, Alexander Lemm, Christoph Russ, Razvan Ionasec, Nikos Paragios, Bram van Ginneken, Marie-Pierre Revel Dubois

Viaarxiv icon

Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging

Dec 02, 2020
Abel Díaz Berenguer, Hichem Sahli, Boris Joukovsky, Maryna Kvasnytsia, Ine Dirks, Mitchel Alioscha-Perez, Nikos Deligiannis, Panagiotis Gonidakis, Sebastián Amador Sánchez, Redona Brahimetaj, Evgenia Papavasileiou, Jonathan Cheung-Wai Chana, Fei Li, Shangzhen Song, Yixin Yang, Sofie Tilborghs, Siri Willems, Tom Eelbode, Jeroen Bertels, Dirk Vandermeulen, Frederik Maes, Paul Suetens, Lucas Fidon, Tom Vercauteren, David Robben, Arne Brys, Dirk Smeets, Bart Ilsen, Nico Buls, Nina Watté, Johan de Mey, Annemiek Snoeckx, Paul M. Parizel, Julien Guiot, Louis Deprez, Paul Meunier, Stefaan Gryspeerdt, Kristof De Smet, Bart Jansen, Jef Vandemeulebroucke

Figure 1 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Figure 2 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Figure 3 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Figure 4 for Explainable-by-design Semi-Supervised Representation Learning for COVID-19 Diagnosis from CT Imaging
Viaarxiv icon

Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients

Aug 21, 2020
Sofie Tilborghs, Ine Dirks, Lucas Fidon, Siri Willems, Tom Eelbode, Jeroen Bertels, Bart Ilsen, Arne Brys, Adriana Dubbeldam, Nico Buls, Panagiotis Gonidakis, Sebastián Amador Sánchez, Annemiek Snoeckx, Paul M. Parizel, Johan de Mey, Dirk Vandermeulen, Tom Vercauteren, David Robben, Dirk Smeets, Frederik Maes, Jef Vandemeulebroucke, Paul Suetens

Figure 1 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 2 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 3 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Figure 4 for Comparative study of deep learning methods for the automatic segmentation of lung, lesion and lesion type in CT scans of COVID-19 patients
Viaarxiv icon

Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge

Jul 15, 2017
Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel, Moira S. N. Berens, Cas van den Bogaard, Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts, Robbert van der Gugten, Pheng Ann Heng, Bart Jansen, Michael M. J. de Kaste, Valentin Kotov, Jack Yu-Hung Lin, Jeroen T. M. C. Manders, Alexander Sónora-Mengana, Juan Carlos García-Naranjo, Evgenia Papavasileiou, Mathias Prokop, Marco Saletta, Cornelia M Schaefer-Prokop, Ernst T. Scholten, Luuk Scholten, Miranda M. Snoeren, Ernesto Lopez Torres, Jef Vandemeulebroucke, Nicole Walasek, Guido C. A. Zuidhof, Bram van Ginneken, Colin Jacobs

Figure 1 for Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
Figure 2 for Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
Figure 3 for Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
Figure 4 for Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge
Viaarxiv icon