What is autonomous cars? Autonomous cars are self-driving vehicles that use artificial intelligence (AI) and sensors to navigate and operate without human intervention, using high-resolution cameras and lidars that detect what happens in the car's immediate surroundings. They have the potential to revolutionize transportation by improving safety, efficiency, and accessibility.
Papers and Code
Oct 14, 2025
Abstract:Autonomous driving remains a challenging task, particularly due to safety concerns. Modern vehicles are typically equipped with expensive sensors such as LiDAR, cameras, and radars to reduce the risk of accidents. However, these sensors face inherent limitations: their field of view and line of sight can be obstructed by other vehicles, thereby reducing situational awareness. In this context, vehicle-to-vehicle communication plays a crucial role, as it enables cars to share information and remain aware of each other even when sensors are occluded. One way to achieve this is through the use of Cooperative Awareness Messages (CAMs). In this paper, we investigate the use of CAM data for vehicle trajectory prediction. Specifically, we design and train a neural network, Cooperative Awareness Message-based Graph Neural Network (CAMNet), on a widely used motion forecasting dataset. We then evaluate the model on a second dataset that we created from scratch using Cooperative Awareness Messages, in order to assess whether this type of data can be effectively exploited. Our approach demonstrates promising results, showing that CAMs can indeed support vehicle trajectory prediction. At the same time, we discuss several limitations of the approach, which highlight opportunities for future research.
* Accepted at the IEEE Consumer Communications & Networking Conference
(CCNC) 2026 - Las Vegas, NV, USA 9 - 12 January 2026
Via

Oct 08, 2025
Abstract:Ensuring the safety of self-driving cars remains a major challenge due to the complexity and unpredictability of real-world driving environments. Traditional testing methods face significant limitations, such as the oracle problem, which makes it difficult to determine whether a system's behavior is correct, and the inability to cover the full range of scenarios an autonomous vehicle may encounter. In this paper, we introduce a digital twin-driven metamorphic testing framework that addresses these challenges by creating a virtual replica of the self-driving system and its operating environment. By combining digital twin technology with AI-based image generative models such as Stable Diffusion, our approach enables the systematic generation of realistic and diverse driving scenes. This includes variations in weather, road topology, and environmental features, all while maintaining the core semantics of the original scenario. The digital twin provides a synchronized simulation environment where changes can be tested in a controlled and repeatable manner. Within this environment, we define three metamorphic relations inspired by real-world traffic rules and vehicle behavior. We validate our framework in the Udacity self-driving simulator and demonstrate that it significantly enhances test coverage and effectiveness. Our method achieves the highest true positive rate (0.719), F1 score (0.689), and precision (0.662) compared to baseline approaches. This paper highlights the value of integrating digital twins with AI-powered scenario generation to create a scalable, automated, and high-fidelity testing solution for autonomous vehicle safety.
Via

Oct 08, 2025
Abstract:We present a novel hybrid learning-assisted planning method, named HyPlan, for solving the collision-free navigation problem for self-driving cars in partially observable traffic environments. HyPlan combines methods for multi-agent behavior prediction, deep reinforcement learning with proximal policy optimization and approximated online POMDP planning with heuristic confidence-based vertical pruning to reduce its execution time without compromising safety of driving. Our experimental performance analysis on the CARLA-CTS2 benchmark of critical traffic scenarios with pedestrians revealed that HyPlan may navigate safer than selected relevant baselines and perform significantly faster than considered alternative online POMDP planners.
Via

Sep 18, 2025
Abstract:Accurate knowledge of the tire-road friction coefficient (TRFC) is essential for vehicle safety, stability, and performance, especially in autonomous racing, where vehicles often operate at the friction limit. However, TRFC cannot be directly measured with standard sensors, and existing estimation methods either depend on vehicle or tire models with uncertain parameters or require large training datasets. In this paper, we present a lightweight approach for online slip detection and TRFC estimation. Our approach relies solely on IMU and LiDAR measurements and the control actions, without special dynamical or tire models, parameter identification, or training data. Slip events are detected in real time by comparing commanded and measured motions, and the TRFC is then estimated directly from observed accelerations under no-slip conditions. Experiments with a 1:10-scale autonomous racing car across different friction levels demonstrate that the proposed approach achieves accurate and consistent slip detections and friction coefficients, with results closely matching ground-truth measurements. These findings highlight the potential of our simple, deployable, and computationally efficient approach for real-time slip monitoring and friction coefficient estimation in autonomous driving.
* Equal contribution by the first three authors
Via

Sep 16, 2025
Abstract:Deep learning models have been shown to be susceptible to adversarial attacks with visually imperceptible perturbations. Even this poses a serious security challenge for the localization of self-driving cars, there has been very little exploration of attack on it, as most of adversarial attacks have been applied to 3D perception. In this work, we propose a novel adversarial attack framework called DisorientLiDAR targeting LiDAR-based localization. By reverse-engineering localization models (e.g., feature extraction networks), adversaries can identify critical keypoints and strategically remove them, thereby disrupting LiDAR-based localization. Our proposal is first evaluated on three state-of-the-art point-cloud registration models (HRegNet, D3Feat, and GeoTransformer) using the KITTI dataset. Experimental results demonstrate that removing regions containing Top-K keypoints significantly degrades their registration accuracy. We further validate the attack's impact on the Autoware autonomous driving platform, where hiding merely a few critical regions induces noticeable localization drift. Finally, we extended our attacks to the physical world by hiding critical regions with near-infrared absorptive materials, thereby successfully replicate the attack effects observed in KITTI data. This step has been closer toward the realistic physical-world attack that demonstrate the veracity and generality of our proposal.
Via

Sep 03, 2025
Abstract:The Waymo Open Motion Dataset (WOMD) has become a popular resource for data-driven modeling of autonomous vehicles (AVs) behavior. However, its validity for behavioral analysis remains uncertain due to proprietary post-processing, the absence of error quantification, and the segmentation of trajectories into 20-second clips. This study examines whether WOMD accurately captures the dynamics and interactions observed in real-world AV operations. Leveraging an independently collected naturalistic dataset from Level 4 AV operations in Phoenix, Arizona (PHX), we perform comparative analyses across three representative urban driving scenarios: discharging at signalized intersections, car-following, and lane-changing behaviors. For the discharging analysis, headways are manually extracted from aerial video to ensure negligible measurement error. For the car-following and lane-changing cases, we apply the Simulation-Extrapolation (SIMEX) method to account for empirically estimated error in the PHX data and use Dynamic Time Warping (DTW) distances to quantify behavioral differences. Results across all scenarios consistently show that behavior in PHX falls outside the behavioral envelope of WOMD. Notably, WOMD underrepresents short headways and abrupt decelerations. These findings suggest that behavioral models calibrated solely on WOMD may systematically underestimate the variability, risk, and complexity of naturalistic driving. Caution is therefore warranted when using WOMD for behavior modeling without proper validation against independently collected data.
Via

Aug 23, 2025
Abstract:The fast development of technology and artificial intelligence has significantly advanced Autonomous Vehicle (AV) research, emphasizing the need for extensive simulation testing. Accurate and adaptable maps are critical in AV development, serving as the foundation for localization, path planning, and scenario testing. However, creating simulation-ready maps is often difficult and resource-intensive, especially with simulators like CARLA (CAR Learning to Act). Many existing workflows require significant computational resources or rely on specific simulators, limiting flexibility for developers. This paper presents a custom workflow to streamline map creation for AV development, demonstrated through the generation of a 3D map of a parking lot at Ontario Tech University. Future work will focus on incorporating SLAM technologies, optimizing the workflow for broader simulator compatibility, and exploring more flexible handling of latitude and longitude values to enhance map generation accuracy.
* GEOProcessing 2025 (2025) 56-61
* 6 pages, 12 figures. Published in the Proceedings of GEOProcessing
2025: The Seventeenth International Conference on Advanced Geographic
Information Systems, Applications, and Services (IARIA)
Via

Jul 27, 2025
Abstract:Autonomous racing has gained increasing attention in recent years, as a safe environment to accelerate the development of motion planning and control methods for autonomous driving. Deep learning models, predominantly based on neural networks (NNs), have demonstrated significant potential in modeling the vehicle dynamics and in performing various tasks in autonomous driving. However, their black-box nature is critical in the context of autonomous racing, where safety and robustness demand a thorough understanding of the decision-making algorithms. To address this challenge, this paper proposes MS-NN-steer, a new Model-Structured Neural Network for vehicle steering control, integrating the prior knowledge of the nonlinear vehicle dynamics into the neural architecture. The proposed controller is validated using real-world data from the Abu Dhabi Autonomous Racing League (A2RL) competition, with full-scale autonomous race cars. In comparison with general-purpose NNs, MS-NN-steer is shown to achieve better accuracy and generalization with small training datasets, while being less sensitive to the weights' initialization. Also, MS-NN-steer outperforms the steering controller used by the A2RL winning team. Our implementation is available open-source in a GitHub repository.
* Accepted at the 2025 IEEE International Conference on Intelligent
Transportation Systems (ITSC)
Via

Aug 19, 2025
Abstract:Precise and comprehensive situational awareness is a critical capability of modern autonomous systems. Deep neural networks that perceive task-critical details from rich sensory signals have become ubiquitous; however, their black-box behavior and sensitivity to environmental uncertainty and distribution shifts make them challenging to verify formally. Abstraction-based verification techniques for vision-based autonomy produce safety guarantees contingent on rigid assumptions, such as bounded errors or known unique distributions. Such overly restrictive and inflexible assumptions limit the validity of the guarantees, especially in diverse and uncertain test-time environments. We propose a methodology that unifies the verification models of perception with their offline validation. Our methodology leverages interval MDPs and provides a flexible end-to-end guarantee that adapts directly to the out-of-distribution test-time conditions. We evaluate our methodology on a synthetic perception Markov chain with well-defined state estimation distributions and a mountain car benchmark. Our findings reveal that we can guarantee tight yet rigorous bounds on overall system safety.
* Accepted by the 23rd International Symposium on Automated Technology
for Verification and Analysis (ATVA'25)
Via

Jul 02, 2025
Abstract:Most autonomous cars rely on the availability of high-definition (HD) maps. Current research aims to address this constraint by directly predicting HD map elements from onboard sensors and reasoning about the relationships between the predicted map and traffic elements. Despite recent advancements, the coherent online construction of HD maps remains a challenging endeavor, as it necessitates modeling the high complexity of road topologies in a unified and consistent manner. To address this challenge, we propose a coherent approach to predict lane segments and their corresponding topology, as well as road boundaries, all by leveraging prior map information represented by commonly available standard-definition (SD) maps. We propose a network architecture, which leverages hybrid lane segment encodings comprising prior information and denoising techniques to enhance training stability and performance. Furthermore, we facilitate past frames for temporal consistency. Our experimental evaluation demonstrates that our approach outperforms previous methods by a large margin, highlighting the benefits of our modeling scheme.
* Accepted at IROS 2025
Via
